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Abstract—In order to solve the problems of the original
sparrow search algorithm (SSA) in the unmanned aerial
vehicle (UAV) trajectory planning, such as low optimization
accuracy and slow convergence speed, an enhanced sparrow
search algorithm (ESSA) was proposed. Firstly, Halton
sequence was used to initialize the population to increase
the diversity of the population and improve the subsequent
search accuracy of the algorithm. Secondly, the quasi-
reflection learning mechanism is introduced to improve the
individual quality of the algorithm after each iteration, and
improve the optimization accuracy and convergence speed
of the algorithm. The improved algorithm is applied to the
trajectory planning of the UAV, the results show that the
flight cost of the UAV trajectory found by ESSA is lower
and the convergence speed is faster.
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I. INTRODUCTION

UAV [1] trajectory planning is a hot issue in the field

of UAVs today, and ensuring that UAVs autonomously

plan a reasonable and feasible flight path is the pursuit

goal of UAV intelligence. However, when facing complex

environments such as mountainous areas, urban areas

and no-fly zones, due to uncertainties and constraints of

numerous parameters, the trajectory planning still suffers

from slow planning speed and unreasonable trajectories,

so that UAVs face high flight costs and need to find new

solutions.

The population intelligence optimization algorithm has

been developed rapidly in recent years, and its excellent

characteristics can help UAVs plan a reasonable and

safe navigation route with low flight cost quickly. For

example, Fu Xingwu et al [2] used an improved particle

swarm optimization algorithm to achieve a good trajectory

planning effect for UAVs in 3D. Wu Kun et al [3] used the

improved whale optimization algorithm to obtain a flight

cost and good feasibility of the trajectory, and AJEIL

et al [4] combined particle swarm and bat optimization

algorithms to solve a relatively short distance and good

smoothness of the UAV trajectory.

In 2020, XUE J K et al. proposed a new population

intelligent optimization algorithm-sparrow search algo-

rithm [5] (SSA), which is significantly better than other

population intelligent optimization algorithms in terms of

the search accuracy and the ability to escape from the

local optimum, and is more suitable for the complex

optimization problem of UAV trajectory planning. To

further improve the algorithm performance, Xin Lu et

al [6] improved the global search capability and search

accuracy of the algorithm by introducing Tent chaotic

sequences and Gaussian variants. Qing-Hua Mao [7] et

al. integrated the Coasean variation and the backward

learning strategy to coordinate the algorithm’s ability of

global and local search and help the algorithm to jump

out of the local optimum. Andi Tang et al [8] combined

the sine cosine algorithm to improve the algorithm de-

velopment and exploration capabilities. These improved

algorithms have improved the performance of the sparrow

algorithm for finding the optimum to some extent, but the

algorithm still has the following defects: the individuals

in the population are not evenly distributed and prone to

overlap, which leads to incomplete subsequent search of

the algorithm; the algorithm converges slowly, and the

quality of individuals cannot change significantly after

each iteration, and it cannot approach the optimal solution

quickly. Due to these two major defects, the optimization

accuracy and convergence speed of the sparrow algorithm

in the UAV trajectory planning problem are not satisfac-

tory.

In order to improve the above-mentioned algorithm

defects, an Enhanced Sparrow Search Algorithm (ESSA)

is proposed in this paper. Firstly, the sparrow popula-

tion is initialized by Halton sequence [9], so that the

population diversity is improved and the coverage of

the population in the solution space is enhanced, and

secondly, the quality of individuals after each iteration

cycle is improved by using the quasi-reflective learning

[10] mechanism. Simulation experiments show that ESSA

can find a navigation route for UAVs with less flight cost,

better robustness, faster convergence and better feasibility.

II. IMPROVEMENT OF THE SPARROW SEARCH

ALGORITHM

A. Sparrow search algorithm

Sparrow search algorithm (SSA) and Particle Swarm

Optimization (PSO) [11], Whale Optimization Algorithm

(WOA) [12], etc. are all population intelligence optimiza-

tion algorithms. SSA simulates the predatory and anti-

predatory behaviors of sparrow populations to continu-

ously update individual positions to find the optimal food

source. In the algorithm, there are three types of sparrows:

discoverers, joiners and vigilantes. The parameters set the

proportion of both discoverers and vigilantes to 10%-

20%, and the proportion of both discoverers and joiners is
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kept constant; when the identity of a discoverer changes,

there is always a joiner whose identity will also change.

The discoverers guide the foraging area and direction

of the population, the joiners follow the discoverers

with a certain probability, and the vigilantes are mainly

responsible for the vigilance and monitoring around the

food source area.

B. The improvement method of sparrow search algorithm

1) Halton sequence to initialize populations: The orig-

inal sparrow search algorithm initializes the population

positions in a random distribution, which leads to uneven

distribution of individuals in the solution space, reduced

population diversity and aggregation among individuals,

making the algorithm fall into a local optimum. the Halton

sequence can effectively improve this situation.

Select n mutually prime numbers and keep slicing them

to form some non-repeating and uniform points, each with

coordinates between [0,1]. The algorithm is as follows:

w =
m∑
i=0

bip
i
n = bmpmn + · · ·+ b1p

1
n + b0 (1)

where pn ≥ 2, w is any integer greater than 1, bi ∈
{0, 1, · · · pn − 1} (i = 0, 1, · · ·m). Next, knowing bi and

pn, define the basic inverse (radical-inverse) function as

ϕn(w) = b0p
−1
n + b1p

−2
n + · · ·+ bmp−m−1

n (2)

The n-dimensional Halton sequence can be composed of

n different and mutually prime bases p:

H(w) = {ϕ1(w), ϕ2(w), · · · , ϕn(w)} (3)

The two-dimensional sparrow population is selected and

the location distribution maps of the random initialized

population and the Halton sequence initialized population

are compared, and the simulation plots are as follows:

(a) Random distribution (b) Halton sequence distri-
bution

Figure 2: Population location distribution map

From the comparison of the Figure 2, it can be seen that

the population, after initialized by Halton sequence, has

a higher coverage in the solution space and is more uni-

formly distributed without population aggregation, which

provides a good basis for the subsequent iterative opti-

mization search.

2) Quasi-reflective learning: The reverse learning

mechanism [13] is to reverse the candidate solution

represented by the population position to obtain a reverse

solution, and then select a new population with higher

quality according to the actual fitness ranking, which

improves the probability of the algorithm to find the

optimal solution. The quasi-reflective learning mechanism

is a newly proposed concept based on reverse learning,

which has improved the accuracy of finding the optimal

solution and the convergence speed compared to the

traditional reverse learning. The pseudo-code of the quasi-

reflective learning mechanism is as follows:

Algorithm 1 Quasi-reflective learning pseudo-code

input: P0 = {Xi,j} , i = 1, 2, · · · , N ; j = 1, 2, · · · , D
output: P =

{
XQ

i,j

}
, i = 1, 2, · · · , N ; j = 1, 2, · · · , D

1: the number of populations be N, the dimension be

D, the upper and lower bounds of the solution space

be ub and lb respectively, and r be a random number

between (0,1).

2: for i = 1 : N do
3: for j = 1 : D do
4: Mj = (ubj + lbj)/2
5: if Xi,j < Mj then
6: XQ

i,j = Xi,j + (Mj −Xi,j)× r
7: else
8: XQ

i,j = Mj + (Xi,j −Mj)× r
9: end if

10: end for
11: end for
12: Merge the populations {P0, P} and sort them from

best to worst according to the fitness value

13: Select the first N individuals with better fitness values

to form a new population

Thirty individual sparrows were selected for the quasi-

reflex learning experiment. The upper and lower bounds

of the three-dimensional solution space are taken as 100

and -100, respectively, with red dots indicating individual

sparrows and blue triangles indicating the global optimal

(a) without Quasi-reflection learning (b) 10 times Quasi-reflection learning (c) 50 times Quasi-reflection learning

Figure 1: Population location distribution map
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positions. The optimal object function is:

f(x) =

n∑
i=1

x2
i (4)

Observing Figure 1, we can see that after the quasi-

reflection learning, as the number of iterations of the algo-

rithm increases, the individual sparrow will be infinitely

close to the global optimal position. Thus, it can be seen

that the quasi-reflection learning mechanism can help

the sparrow algorithm to improve the search accuracy,

increase the probability of individual sparrow searching

for the optimal solution, and the convergence speed will

be greatly improved.

C. Algorithm flow of ESSA

1) Initialize the parameters, including the number of

individuals of various classes of sparrows, alert

threshold and safety threshold, etc.

2) Initialize the population locations using Halton se-

quence.

3) Calculate the fitness value of each sparrow location

and find the individuals with the best and worst

fitness values and their locations.

4) Perform the update of the discoverer’s position.

5) Perform the update of joiner’s position.

6) Update the position of the alerters.

7) Perform quasi-reflective learning of the locations of

the updated sparrow population and select the N

individuals with better fitness values to form a new

population of sparrows.

8) Compare the fitness value of the new population

with the fitness value of the original population and

perform the update of the global optimal position.

9) Determine whether the iteration termination con-

dition is met, if so, proceed to the next step,

otherwise, skip to step 3.

10) The algorithm operation ends, output and record the

optimal result.

III. EXPERIMENTATION

A. Flight cost function

To ensure that the intelligent optimization algorithm

finds the optimal solution and optimal trajectory, the UAV

will have the lowest flight cost and the safest path. The

experiments will combine the flight distance cost, flight

altitude cost, flight turn angle cost and flight threat cost

as the cost function [14], i.e., the fitness function of the

algorithm to find the optimum, to constrain the flight

trajectory of the UAV.

1) Flight distance cost: The closer the flight distance

from the starting point to the end point, the more energy-

efficient and efficient the UAV is for efficiency and energy

considerations. The flight distance cost is expressed as

f1 =
n∑

i=1

√
Δx2 +Δy2 +Δz2 (5)

where Δx,Δy,Δz are the distances of two adjacent

nodes on the trajectory in x, y, z, respectively. i =
1, 2, · · ·n represents the two adjacent nodes of the ith

group.

2) Flight altitude cost: In order to make the UAV

perform the task at a relatively safe altitude, there will

be a relative altitude range, and the altitude difference

should not be too large when flying. This will help the

UAV fly smoothly, reduce unnecessary lift operations and

also save energy. The flight altitude cost is expressed as

f2 =

√√√√ n∑
i=1

(hi − ha)2 (6)

where hi is the height of the nodes on the trajectory,

ha represents the average height of all nodes, and i =
1, 2, · · ·n represents the i-th node.

3) Flight turn angle cost: The flight turn angle rep-

resents the change in angle of the UAV as it passes two

nodes on the trajectory, which can cause damage to the

UAV if the turn angle is too large. The turn angle change

of the UAV needs to be constrained, and the flight turn

angle cost is expressed as:

f 3 =
∑n

i=1
(

∣∣∣∣arccos( rTi ri+1

||ri|| · ||ri+1||
∣∣∣∣) (7)

ri = (xi+1 − xi, yi+1 − yi, zi+1 − zi)
T (8)

where ri denotes the transpose of the coordinate dif-

ference between the ith node and the i+1 node on the

trajectory.

4) Flight threat cost: In order to make the UAV avoid

mountain peaks and no-fly zones as much as possible and

ensure flight safety, the flight threat cost is introduced, and

for mountain peaks, it is expressed as:

fs =

{
0,mzi ≥ z2

(
xi, yi

)
∞, zi < z2

(
xi, yi

) (9)

where (xi, yi) are the horizontal and vertical coordinates

of the nodes on the trajectory, zi denotes the height of the

nodes on the trajectory, and z2 is the peak function model.

For the no-fly zone, the flight threat cost is expressed as:

fj =

{
0, di ≥ dj
∞, di < dj

(10)

where di represents the distance of the node on the

trajectory from the center of each no-fly zone, and dj
represents the radius of each no-fly zone. So the total

flight threat cost expression is:

f4 = fs ∪ fj (11)

Therefore, the total flight cost function, i.e., the algorithm

seeking fitness function, can be expressed as:

F = λ1f1 + λ2f2 + λ3f3 + λ4f4 (12)

Where λ ∈ (0, 1) denotes the weighting coefficients,

the contribution of each flight cost function to the trajec-

tory is different, and for the consideration of UAV safety,

optimal altitude and distance, four weighting coefficients

are set in order: 0.5, 0.5, 0.3 and 0.2.
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Table I: Terrain parameter setting

Terrain type Height(m) Horizontal coordinate(km) Vertical coordinate(km) Horizontal slope/radius(km) Vertical slope/radius(km)
Mountain 1 60 60 60 10 10
Mountain 2 80 100 105 12 12
Mountain 3 100 150 160 15 15

No-Fly Zone 1 50 50 100 10 10
No-Fly Zone 2 50 80 150 20 20
No-Fly Zone 3 50 160 70 20 20
No-Fly Zone 4 50 115 45 15 15

B. Creation of terrain environment

In order to simulate the relatively uneven ground in a

realistic environment, the study uses a more commonly

used geomorphic function model [15], as follows:

z1 = sin(y + a) + bsin(x) + ccos(d
√
x2 + y2)+

ecos(y) + fsin(f
√
x2 + y2) + gcos(y)

(13)

Where the six parameters, a, b, c, d, e, f, and g, can

be used to adjust the degree of curvature roughness of

the ground surface, and all six parameters are set to 1

in the study. In order to simulate the flight obstacle,

the mountainous area and no-fly zone are added to the

experiment, where the function model of the mountain

peak is:

z2 =

n∑
i=1

hi · exp
[
− (x− xi)

2

a2xi
− (y − yi)

2

b2yi

]
(14)

where i denotes the ith peak, n is the number of moun-

tains, hi denotes the altitude of the mountain, (xi, yi) is

the coordinate of the highest point of the mountain, and

(axi, byi) is the parameter of the slope of the mountain.

The red cylinder is the no-fly zone. The parameters of

the mountain peaks and the no-fly zone are set as shown

in Table 1, and the resulting 3D topographic and aerial

views are shown in Figure 4.

(a) 3D topographic (b) Aerial view

Figure 4: topographic map

C. UAV trajectory finding test
The ESSA, PSO, WOA and SSA algorithms are used

to find the optimal trajectory in the 3D topographic map,

and the starting point is set to [0,0,20] and the ending

point is set to [200,200,30]. The number of algorithm

populations is set to 30 and the number of iterations is

500.Compare the effect of merit search.
As can be seen from the track finding results in Figure

3, the ESSA algorithm plans the shortest track length,

(a) PSO trajectory planning (b) WOA trajectory planning

(c) SSA trajectory planning (d) ESSA trajectory planning

Figure 3: UAV trajectory planning diagram
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the smoothest track and has a better obstacle avoidance

capability. The other algorithms fail to find the most ideal

path, and the UAV faces a high flight cost.

Figure 5: Population location distribution map

From the convergence graph in Figure 5, it can be seen

that the ESSA algorithm has the smallest fitness value,

i.e., the flight cost of the planned trajectory is the smallest.

And the convergence is completed in 20 iterations. In

order to prevent the chance of the experiment, each

algorithm was done 30 times of the trajectory finding

experiment.

Figure 6: Optimal fitness value variation diagram

Table II: Optimize data statistics

Algorithm Optimal fitness Average fitness success
PSO 248.91 269.00 18

WOA 249.13 275.54 15
SSA 248.78 268.67 21

ESSA 248.73 254.98 26

It can be visualized from Figure 6 and Table 2 that the

average fitness value after ESSA seeking is the smallest,

i.e., the UAV has the lowest flight cost. the seeking

result of ESSA is less volatile and more stable than

the remaining three algorithms, and its success rate of

trajectory planning is higher, the trajectory is complete

and can successfully avoid obstacles, which has stronger

practical application than the remaining algorithms.

IV. CONCLUSION

In this paper, the enhanced sparrow algorithm ESSA

is applied to optimize the UAV trajectory planning prob-

lem. The Halton sequence and quasi-reflective learning

strategy are introduced in turn, which improves the opti-

mization accuracy and convergence speed compared with

SSA, and is significantly better than other optimization

algorithms. Through the experiments of UAV trajectory

planning, it can be found that the trajectory planned by

ESSA is safer and faster to converge, and the average

flight cost is the lowest, which can better meet the UAV

trajectory planning requirements.

REFERENCES

[1] Shubhani Aggarwal and Neeraj Kumar. Path plan-
ning techniques for unmanned aerial vehicles: A review,
solutions, and challenges. Computer Communications,
149:270–299, 2020.

[2] Xingwu Fu and Yang Hu. Three-dimensional path plan-
ning based on improved pso algorithm. Electronics Optics
Control, 28(3):86, 2021.

[3] Kun Wu and Shaochang Tan. Path planning of uavs
based on improved whale optimization algorithm. Acta
Aeronautica et Astronautica Sinica, 41(S2):724286, 2020.

[4] Fatin H Ajeil, Ibraheem Kasim Ibraheem, Mouayad A
Sahib, and Amjad J Humaidi. Multi-objective path plan-
ning of an autonomous mobile robot using hybrid pso-
mfb optimization algorithm. Applied Soft Computing,
89:106076, 2020.

[5] Jiankai Xue and Bo Shen. A novel swarm intelligence
optimization approach: sparrow search algorithm. Systems
Science & Control Engineering, 8(1):22–34, 2020.

[6] Xin Lv, Xiaodong Mu, Jun Zhang, and Zhen Wang. Chaos
sparrow search optimization algorithm. Journal of Beijing
University of Aeronautics and Astronautics,, 47(8):1712–
1720, 2021.

[7] Qinghua Mao and Qiang Zhang. Improved sparrow al-
gorithm combining cauchy mutation and opposition-based
learning. Computer Science and Exploration, 15(6):1155–
1164, 2021.

[8] Andi Tang, Tong Han, Dengwu Xu, and Lei Xie. Path
planning method of unmanned aerial vehicle based on
chaos sparrow search algorithm. Computer Applications,
41(7):2128, 2021.

[9] Dongmin Huang, Quan Pan, and Xinhua Liang. Research
of particle filter algorithm based on randomized halton
sequences. Application Research of Computers, 28(1):91–
94, 2011.

[10] Qian Fan, Zhenjian Chen, and Zhanghua Xia. A
novel quasi-reflected harris hawks optimization algo-
rithm for global optimization problems. Soft Computing,
24(19):14825–14843, 2020.

[11] Dongshu Wang, Dapei Tan, and Lei Liu. Particle swarm
optimization algorithm: an overview. Soft Computing,
22(2):387–408, 2018.

[12] Seyedali Mirjalili and Andrew Lewis. The whale optimiza-
tion algorithm. Advances in engineering software, 95:51–
67, 2016.

[13] Hui Wang, Zhijian Wu, Shahryar Rahnamayan, Yong
Liu, and Mario Ventresca. Enhancing particle swarm
optimization using generalized opposition-based learning.
Information sciences, 181(20):4699–4714, 2011.

[14] Shuran Zhang. Research on uav track planning based on
swarm intelligence algorithm. Master’s thesis, University
of Electronic Science and Technology of China, 2020.

[15] Zhen Wu and Honglan Wu. Uav route planning based on
the improved genetic algorithm. Electronic Measurement
Technology, 44(24):52–58, 2021.

140


