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Abstract—Aiming at the fact that when the input data in the
deep subspace clustering networks (DSC) has noise, its
robustness is poor, the performance is significantly degraded,
and the method has too many learnable parameters, we
suggest an overcomplete deep low-rank subspace clustering
(ODLRSC). The technique is easy to use, efficient, and has
shown to be a great fit for subspace clustering. By inserting a
fully connected linear layer and its transposition between the
encoder and decoder in our suggested technique, we may
automatically put rank restrictions on the learnt
representations. Additionally, in order to obtain a more
reliable representation of the input data for clustering, the
characteristics of the under- and over-complete auto-encoder
networks are fused in the encoder. Our technique beats DSC
and other clustering algorithms in the field of clustering
error, and can sustain high level of quality throughout a
broad range of LRRs, according to experimental findings on
benchmark datasets.
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L INTRODUCTION

Subspace clustering algorithm is a common clustering
algorithm for processing high-dimensional data. High-
dimensional data is generally embedded in low-
dimensional subspaces, and subspace clustering uses this
feature to find reasonable clustering divisions in different
subspaces. The objective of subspace clustering is really to
figure out how many subspaces there are, how big they are,
what each subspace's basis is, and how to divide the data
given a dataset that results from the union of many
subspaces. Subspace clustering techniques are often used
in image segmentation, motion segmentation, picture
clustering, movie recommendation, and several other
computer vision applications because they perform well
with high-dimensional data.

Deep models are being utilized more often as time goes
on in several sectors of clustering to enhance the
performance of conventional clustering techniques. In
comparison to conventional subspace clustering techniques,
this leads to greater clustering efficiency. As a result of
deep models' ability to capture data nonlinearity and
develop representations that reside on the union of linear
subspaces, the benefit is particularly noticeable when
sample points fall on the union of non-linear subspaces.
The Deep Subspace Clustering Network (DSC), which he
[1] introduced as the first deep learning-based approach,
addresses the subspace clustering issue. With an
intermediate self-expressive layer between the encoder and
decoder, this network's undercomplete ("encoder-decoder")
design makes use of a convolutional autoencoder to
generate effective deep subspace clustering representations.
There are two key issues with DSC, despite the fact that it
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performs well and much better than earlier techniques. The
performance suffers greatly when there is data noise since
the system is less resistant. The second is that the method
has too many learnable parameters

In this essay, we put forward Overcomplete Deep Low-
Rank Subspace Clustering Network (ODLRSC) as a new
deep architecture. By using an excessively complex
convolutional autoencoder, it results in overcomplete
representation [2]. In order to implicitly provide rank
restrictions on the learnt representation, a fully connected
linear layer and its transpose are introduced between the
encoder and decoder. And this architecture allows the
convolutional autoencoder to be trained in parallel with the
undercomplete autoencoder in DSC. We test the
effectiveness of our technique using three statistical
datasets: MNIST [3], COIL20 [4], and ORL [5]. Our tests
demonstrate that ODLRSC is clearly superior than DSC
and other conventional subspace clustering techniques.
This architecture not only has better robustness [6], but
also requires fewer learnable parameters.

II.  RELATED WORK

Subspace clustering was initially resolved using linear
techniques: first, a matrix of affinity was created by
calculating the affinity between every matched set of data
points, and then, using various spectral clustering
techniques [7], different clusters were identified by
applying the techniques to the affinity matrix. This
approach may be represented mathematically as the
following optimisation issue:

e A :
"EICl, +5IX = XClE st (diag(@) =0)

Where X € R™™ is a data matrix whose columns
represent sample points x; € R¥™™ Cisa self-expression
matrix, p=0 or 1 or core bound norm. Here, the diagonal
restriction prevents finding easy solutions. However, this
clustering technique is only appropriate for the subspaces
of linear. If the data points are not in the subspace of linear,
one approach is to implicitly translate the data to a new
space using the kernel method [8], which will improve
how well the data fits the linear subspace. However, this
method makes it challenging to choose a good kernel for a
specific collection of data points.

Subspace clustering techniques often employ
autoencoders to extract representations of one's deeper
self-derived from one's incoming data as deep models
become more and more prevalent in computer vision and
machine learning applications. Among them, Deep
Subspace Clustering (DSC) introduces a new self-
expression layer for deep autoencoders, that is, between
the encoder and the decoder is a completely linked linear
layer that has been introduced, which facilitates the
generation of befitting subspace clustering representations.



In [9], the DSC model was further utilized in order to build
adversarial approaches for the generation of superior
quality subspaces. This work was based on DSC. Another
end-to-end framework, based on the DSC model, has been
created by [10] that delivers high-performance outcomes in
the clustering process via collaborative education, self-
expression matrices, and clustering results. Unlike the
above methods, in the encoder, we make use of an
overcomplete representation, and for the purpose of
making it easier to impose rank restrictions on the self-
expressing matrix, we make use of a fully linked linear
layer in addition to its transpose. In comparison to the DSC
technique, our model is more resilient and needs the
learning of a much less number of network parameters.

III.  OVERCOMPLETE DEEP LOW-RANK SUBSPACE

CLUSTERING

In order to increase the performance of clustering, our
proposed technique takes use of overcomplete
representations as well as low-rank representations [11]. In
this part, we will first provide a concise overview of our
suggested network architecture, and then proceed to detail
our refined approach.

A.  Network Structure

We use two encoders trained concurrently in ODLRSC.

One has an up-sampling layer after each convolutional
layer, while the other has a max-pooling layer. We provide
a generalized method to overcomplete signal
representation. It entails employing an overcomplete basis,
which increases the number of basic functions beyond the
number of samples of the input signal. As a result, the
overcomplete representation is proved to be more stable
and has better flexibility in capturing the structure of the
data. For simplicity, we use bilinear interpolation for up-
sampling in the network architecture.

The completely linked linear layer and its transposed
layer make up the layer for self-expression [12], and their
weights match up with the coefficients of the self-
expressive representation matrix C. The affinity matrix is
immediately learned by this layer. Convolutional and up-
sampling layers make up the decoder. The decoder
reconstructs the original data using the self-expression
layer's output. The self-expression layer of this model
employs m x n learnable parameters, which is much less
than the n?> of the DSC method and results in a
considerable difference. In order to produce clusters,
spectral clustering is performed with the learnt affinity
matrix as the input. The enhanced network structure and
ODLRSC strategy are shown in Figure 1.

B. Improved Method

In the beginning of our training, our autoencoder is
trained independently utilizing reconstruction loss [13].
The formula for reconstruction loss L, is as follows:

L, = |lx — 2|7 2)

Where X = [X;]...]X,] € R¥®™ is a data matrix that
consists of n sample points that have d dimensions each, X
is the decoder-to-input matrix reconstruction.

When training the rebuilt network, we make use of the
Adam's 0.001 learning rate across all of our trials. The
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pretrained weights are first loaded into the network, and
then the network is fine-tuned using a layer of self-
expression and a loss term of self-expression L, with the
following formula: 4
3 2

Lself(eic) :AZHCHp +?”Zﬂefzﬂec”1: (3)

In the equation, 6 stands for the network's parameters,
and 0. stands for the encoder's parameters. Z is the matrix
that reflects the latent representation that is present in the
network's self-expression layer, and C is the matrix that
reflects the coefficients of self-representation. In the fine-
tuning step, we train the network using L2 regularization
on C (p=2).

When it comes to optimizing combined losses from
these two events, we rely on the Adam optimizer. The
formula for the overall loss, Ltotal, is as follows:

y! - A
Lroar = o [X= K[ + 2 lClly + 3126, — Za €],

F(4)

Where the hyperparameters A1, A2, and A3 regulate the
degree to which each individual loss term affects the
ultimate loss. Different datasets have different
hyperparameter settings. The following section will go
through the particular adjustments to be made to the
hyperparameters.

When a low-rank constraint is added to the self-
expression layer, the following optimization issue may be
solved using the following formula to train the model.

mrlcl, + 2 X - %2 + 2125, - Zo,ClL )
subject to diag(C) =0 (6)
rank(C) <m @)

In the above formula, a hyperparameter known as the
scalar m(m<<n) places a cap on the highest potential rank
that may be achieved by matrix C.

The self-expressive layer C of the network design is
replaced with a completely linked linear layer
€ € R™™ and its transpose. At this time, we can regard the
self-expressive layer as a symmetric matrix of C Z¢¢ ,
where the weight matrix © € R™™ need to learn, according
to this definition, we can know that the rank(C) <m
always holds. As a consequence of this, the self-expressive
matrix C is subject to an implicit rank limitation imposed
by our network design.

As a result, we are able to drill the suggested network
topology by finding the optimal solution to the following
minimization issue.
minl - =T )Ll X )’{ 2 2“3 2 7 — T2
N I S | LR AL N

Standard backpropagation methods [14] may be used
to tackle this minimization issue. Given that the issue can
only have one correct answer, €1 , we construct a balanced
affinity matrix [15] W = |E!E{| , which is used to
represent the pairwise relationship of sample points. We
next retrieve the fundamental subspace and ascertain the
assignment using spectral clustering techniques on matrix
W.

The model's performance on various subspace
clustering tasks is then evaluated via a series of tests using
benchmark datasets.
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Figurel. Generall strategy for the suggested ODLRSC technique.

IV. EXPERIMENTS

We use TensorFlow 1.14 in PyCharm to conduct all of
our experiments, and then we use three datasets—MNIST,
COIL20 and ORL—to assess our methodology. Our
method is compared with low-rank subspace clustering
(LRSC) [15], sparse subspace clustering (SSC) [16], low-
rank representation (LRR) [17], Efficient Dense Subspace
Clustering (EDSC) [18], Kernel Sparse Subspace
Clustering (KSSC) [19], and Deep Subspace Clustering
(DSC). We go into depth about the hyperparameters we
utilize for each dataset in the sections that follow, which
differs in each dataset due to the different amount of data.
In all of our quantitative analyses, the clustering error rate
is something we employ, which may be described as
follows:

* of wrongly clustered samples

X 100%
©

error =
# of all samples

A.  Mnist Dataset

Define abbreviations and acronyms the first time they
are used in the text, even after they have been defined in
the abstract. The handwritten digit pictures in the MNIST
dataset are organized into 10 categories, ranging from 0 to
9 (K=10). We make a selection of 100 photographs at
random from each category and perform subspace
clustering using the set of these 1000 images with an
image size of 28 x 28. In our network design (ODLRSC)
for this dataset, the overcomplete encoder has two
convolution blocks, the undercomplete encoder has three
convolution blocks, and the decoder has three convolution
blocks. In the encoder and decoder, the convolutional
layers that kernel size is 55 for the very topmost layer and
33 for each subsequent layer. There are 20 and 10 filters in
the overcomplete encoder, respectively. And there are 20,
10 and 5 filters in the overcomplete decoder, respectively.
When it comes to the decoder, every convolutional block

has a different number of filters: 5, 10, and 20, respectively.

During the fine-tuning phase, we established the following
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parameters: A1=1.00, A,=10.00, A3=0.2 and m=8xK (m«
n=64xK).

B. Coil20 Dataset

The equations are an exception to the prescribed
specifications of this template. COIL20 is an image dataset
that has a total of 1440 photos with a resolution of 32 x 32
pixels, 72 photographs for each of the 20 unique
images(K=20) that make up the dataset, and many samples
of the same images were photographed from a variety of
angles. For this dataset, our network design (ODLRSC)
contains one convolution block in the decoder and one
convolution block in each of the overcomplete and
undercomplete encoders. The encoder and decoder's
convolutional layers have a kernel size of 3 by 3 and 15
filters in each convolutional layer. During the fine-tuning
phase, we established the following parameters: A1=1.00,
A2=1.00, A3=12.00 and m=8xK (m<« n=72xK).

C. Orl Dataset

ORL is a face image dataset including 400 face
pictures of size 32 by 32 from 40 distinct persons(k=40),
each with 10 samples. The ORL dataset is comprised of
photos with a variety of face expressions captured under a
variety of lighting conditions. In our network structure
(ODLRSC) for this dataset, the overcomplete encoder has
two convolution blocks, the undercomplete encoder has
three convolution blocks, and the decoder has three
convolution blocks. In both the encoder and the decoder,
all of the convolutional layers have a core size of 3x3.
The number of filters in the encoder is 3, 3 and 6, while in
the decoder it is the opposite. During the fine-tuning
phase, we established the following parameters: A;=1.00,
2=4.00, 23=0.2 and m=2xK (m<« n=10xK).

D. Result Analysis

The clustering errors for datasets MNIST, COIL20
and ORL are shown in Tables 1, 2 and 3. In the following
three tables, our experimental results are expressed in the



Table 1. Errors in clustering for the MNIST dataset compared to current approaches.

Means LRSC SSC LRR EDSC KSSC DSC ODLRSC
Error 48.57+0.18 54.67+0.23 | 46.14+0.19 | 43.51+0.17 | 47.78+0.18 | 24.97+0.16 19.94+0.14
Table 2. Errors in clustering for the COIL20 dataset compared to current approaches.
Means LRSC SSC LRR EDSC KSSC DSC ODLRSC
Error 31.43+0.17 14.78+0.14 | 30.58+0.18 | 14.76+0.19 | 24.63+0.16 5.13+0.13 3.49+0.11
Table 3. Errors in clustering for the ORL dataset compared to current approaches.
Means LRSC SSC LRR EDSC KSSC DSC ODLRSC
Error 33.57+0.16 32.54+0.21 | 38.27+0.19 | 27.26+0.17 | 34.26+0.17 | 14.07+0.15 13.19+0.13

form of adding and subtracting standard deviations from
the mean of multiple experiments. From these three tables,
we can see that the performance of the DSC method has
been significantly improved after adding the deep learning
method. The performance of our proposed ODLRSC
method has been improved on the basis of DSC. Therefore,
our suggested approach outperforms the DSC approach.
This benefits from our improvement on the DSC algorithm,
by exploiting overcomplete representation and low rank
representations. In comparison to the most recent and
cutting-edge  techniques, the ODLRSC produces
respectable outcomes.

V. CONCLUSION

In this paper, we put forward an overcomplete deep
subspace clustering method based on low-rank
representations, namely ODLRSC. Using a combination of
overcomplete and undercomplete networks, inserting fully
connected linear layers and their transposes between the
encoder and decoder, utilizes both overcomplete and low-
rank representations to perform subspace clustering.
Compared with the DSC method, the model has better
robustness and requires fewer network parameters. The
outcomes of our suggested ODLRSC approach on
benchmark datasets are satisfactory, according to
experiments.
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