
Ant Colony System with Sparse Pheromone

Mengfan Jin , Guangtao Fu , Tianhao Fa , Zhibin Huang*
School of Computer Science

Beijing University of Posts and Telecommunications
Beijing, China

Email: mengfan_jin@163.com; scottfu@bupt.edu.cn;
shraem@163.com; huangzb@bupt.edu.cn

Zhiqiang Chu
Information Center

State Administration for Market Regulation
Beijing, China

Email: chuzhiqiang@samr.gov.cn

Abstract—Ant colony optimization algorithm is a typical
meta-heuristic algorithm, which is widely used in various
combinatorial optimization problems, but its high space
complexity, which has become one of the main constraints
affecting the application of ACO algorithm. The pheromone
matrix is one of the major storage overheads. This paper
based on the analysis of typical ant colony optimization
algorithms, it is observed that the pheromone matrix of ACS
has very strong sparseness. Therefore, SACS is proposed,
whose pheromone matrix uses triplet sparse storage. In
order to solve the problem of how to deal with the number of
items of the initial allocated pheromone triplet and the new
non-default pheromone update, this paper proposed the
method based on the small fixed storage space with different
replacement policies, those are, SACS-Max, SACS-Min,
SACS-Rand. Many experiments show that this method
basically eliminating the storage bottleneck of the
pheromone matrix.

Keywords-ACO; Pheromone Matrix; Sparse Matrix;
Storage Overhead

I. INTRODUCTION

ACO has achieved good performance in many
application fields, with a large number of wonderful
emerging applications, such as virtual machine placement
and scheduling[1], resource allocation[2], network intrusion
detection[3], solving clustering problems[4], etc. With the
further application of ACO, the scale of problems dealt
with by ACO is becoming larger and larger. This paper
focuses on the pheromone storage overhead of ACO.
Through analyzing and observing the changes of the
pheromone matrix during each iteration of the ACS
algorithm, it is observed that pheromone matrix shows
good sparsity, so an Ant Colony System for Sparse Storage
(SACS) of ant pheromone is proposed to change the
support of ant colony optimization algorithm from dense
linear algebra mechanism to sparse linear algebra, so that
the ant colony optimization algorithm can be applied to
larger scale problems. The SACS algorithm proposed in
this paper is based on the triplet realization of pheromone
sparse storage, and the new non-default pheromone update,
and proposed three replacement policies. Many
experiments show that this method pheromones could be
efficiently stored, and the acceptable optimized solution
could still be obtained efficiently, basically eliminating the
storage bottleneck of the pheromone matrix.

II. ANT COLONY SYSTEM AND TSP
Ant Colony Optimization (ACO) is a famous

metaheuristic mechanism, which shows great potential in
solving combinatorial optimization problems. The ACO is

inspired by the behavior of biological ants as they forage
for food. In the process of foraging, the ants will release a
pheromone as a path marker for other ants to refer to when
making path-seeking decisions, which makes the
pheromone become an indirect communication medium
within the ant population, and the ant’s group behavior
will eventually obtain the optimal path to reach the
destination. Since Dorigo designed the first-generation Ant
System in 1991, some influential Ant colony systems have
emerged through continuous improvement, such as Elitist
AS[5], Ant-Q[6], MMAS[7], ACS[8], Rank-based AS,
population-based ACO[9], Beam-ACO, etc.

The TSP is the problem of finding a minimum length
Hamiltonian cycle of the graph, where an Hamiltonian
cycle is a closed tour visiting exactly once each of the

Nn vertices of G. In fact, (published) tests of most
ACO variants have been done on the TSP, which again
confirms the central role of this problem in ACO
research[10]. By assigning N6.1~N4.1  items (N is
the number of cities) to the pheromone triplet, SACS can
reduce the space requirement of the pheromone matrix by
more than 95%, although the solution error is almost the
same as that of the basic ACS, basically eliminating the
storage bottleneck of the pheromone matrix.

III. ANT COLONY SYSTEM WITH SPARSE PHEROMONE

The storage overhead of the ACO algorithm severely
restricts its application. The ACO algorithm will generate a
pheromone matrix, a heuristic information matrix and
some intermediate calculation results. The heuristic
information matrix can be obtained by calculation based
on the original data (such as the distance matrix between
cities in the TSP problem) and the pheromone matrix.
Therefore, the pheromone matrix is the main storage
overhead. But the pheromone matrix of ACS algorithm is
sparse. In this paper, proposes that the pheromones are
stored in a sparse manner instead of the matrix. In this
scheme, a pheromone is stored by a triple (city S , city E ,
pheromone), i.e. a sparse pheromone in a manner similar
to Coordinate (COO). There firstly, the mechanism of
sparse pheromone storage will be introduced. Then the
mechanism and policy to further reduce the storage
overhead will be described, and thirdly the process of
SACS algorithm will be described based on the main steps
of ACS algorithm.

A. The mechanism of sparse pheromone storage
During the process of storing, it is also defaulted that

the pheromones from city S to city E equal to the

171

2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science
(DCABES)

2473-3636/22/$31.00 ©2022 IEEE
DOI 10.1109/DCABES57229.2022.00018

pheromones from city E to city S (the pheromone matrix
is a symmetric matrix) for symmetric TSP problems. A
single pheromone is represented by a triple (city S , city
E , pheromone value). These triples are stored in a fixed
storage space. If there are N cities, the maximum number
of triples is 2N . Ideally, when all ants have the same path,
N triples are needed to store pheromones to represent the
path. But before all the ants agree on a path, there may be
more pheromones. In the experiment of this scheme, it is
found that when N10 triples are allocated, all
pheromone updates are basically saved and less
pheromone updates are discarded. This also indirectly
indicates that there are obvious sparse features in ACS.

Although storing pheromones in triples greatly reduces
the storage overhead of pheromones, searching and
addressing pheromones becomes one of the key factors
affecting the performance of SACS because the reading
and the update of pheromones are often random. Therefore,
a hash table structure is used in SACS as an addressing
mechanism for triples.

Every time we input city number S and city number
E , and the additional pheromones, we first sort S and E .
If ES  , we keep S and E unchanged. If ES  , we
swap the values of S and E , so that ES  . Then, S and
E are used to generate the hash address according to

E)%M + N × (S = ssHash_Addre ,where % is the
modular operation, M is the maximum number of items
in the triplet array, and N is the number of cities.

Thus, the triplet array stores the non-default elements
of the upper triangle of the original pheromone matrix. The
generated hash address serves as an index to indicate
access to the corresponding triplet, and by comparing the
values of S and E , determines whether the data item is
really required. When inserting data, if the corresponding
triplet item is empty, the corresponding data is directly
filled in. If it is not empty, a conflict occurs, then look for
items at 1) ess(Hash_Addr  and 1)- ess(Hash_Addr .
If there are still conflicts, continue to add 1 and subtract 1
in order to generate hash addresses, and then compare to
find any free item. Discard the pheromone item until the
maximum number of conflicts specified by the parameter
maxHashConflicts is reached. When reading data, do
something similar. If it is not found, then return the default
value.

B. Mechanisms and polices to reduce storage overhead
For different TSP problems, it is impossible to predict

and evaluate how many non-default pheromones there are,
so what happens if there are new pheromone updates when
all of the fixed assigned triples are exhausted?

SACS algorithm provides three policies to deal with
this problem: maximum replacement policy (SACS-Max),
minimum replacement policy (SACS-Min), and random
replacement policy (SACS-Rand).

Maximum replacement policy (SACS-Max): In order
to avoid falling into local optimization, when the
pheromone sparse storage space is full, the element item
with maximum pheromone needs to be found and removed.
If the pheromone value of a path is too large, the ants

always choose this path when selecting the city, which
may cause the ant colony system to fall into local
optimization and fail to converge quickly. Replacing the
maximum gives the ants the chance to try more different
paths. If a path improves the quality of the solution, it will
appear in the global optimal path, and after the iteration is
completed, it will be recorded when the global update is
made. Therefore, it can be considered that the maximum
value replacement can delete some pheromone values that
are too large without missing a really useful path.

Minimum value replacement policy (SACS-Min): In
order to remove useless information in the pheromone
sparse storage, the minimum value of pheromone will be
found and removed. Since the smallest pheromone value
maybe belongs to a path that is little visited, such a path
may not contribute to the optimal solution. By replacing
the smallest pheromone value, these storages can be used
to store the more valuable path pheromone.

Random replacement policy (SACS-Rand): As a
comparison strategy, this is a replacement policy that finds
any pheromone randomly in the sparse storage and
removes it. This policy compares the experimental results
of the previous two groups, and through random selection,
it can be observed whether the maximum replacement and
the minimum replacement have an effect on the quality of
the SACS solution and whether it can speed up the
convergence of the algorithm.

C. Operation of SACS
The process of SACS is similar to ACS. It is divided

into initialization, construction of a feasible solution,
obtaining a more optimized solution based on local search,
and updating global pheromone. The last three
subprocesses will be iterated to improve the quality of
feasible solutions. Suppose there are m ants and n cities in
the system. The pheromone on the path from city r to city s
is represented by),(sr , and the city set which the ant
k didn’t visit at current city r is represented by)(rJk .

The first step, initialization, requires allocating
memory and assigning values to variables based on
parameters. The initial value of the pheromone is

0
0 n

1
L

 , where n is the size of the problem, and 0L

is the total length of a complete path obtained by selecting
the nearest neighbor city by greedy algorithm. Randomly
determine an initial city for each ant and delete the initial
city from the never visited city set.

The SACS algorithm initializes a triplet array structure
that stores pheromones.

The second step is to choose a path from the current
city kr to the next city ks for each ant k , and remove the
selected next city from the set of never visited cities. The
method of selecting a city is based on the following
Equation (1):
















)(,
)(,

})],([)],({[
s

0

)(

nexploratiobisedotherwiseS
onexploitatiqqif

ururargmax rJu k


(1)

172

Where 1)qq(0  is a random number and
1)q(0q0  is a parameter set by the system, which

represents the probability of choosing the optimal path of
pheromone concentration.

When 0qq  , through exploitation, we choose the
best path from the current city to the unvisited city.

When 0qq  , we choose the next city by biased

exploration and according to the probability)s,r(pk of
each city obtained by Equation (2).














 


otherwise

rJsif
urur
urur

k

rkJu

,0

)(,
)],([)],([

)],([)],([

)s,r(p
)(

k








(2)

Where  is a pheromone,


 1
 is the reciprocal of

the distance between cities, ）（ s,r is the city to be
visited after ant k arrives at city r (in order to obtain a
feasible solution), and)0( is a parameter that
determines the importance of the pheromone compared to
the distance.

In SACS, because the pheromone is sparsely stored,
the calculation of the heuristic information first needs to
retrieve the triples according to the index numbers of the
two cities. If there is no corresponding entry, the default
value is directly used in the calculation. The element stored
by a triplet array can be accessed directly. This is achieved
by computing the hashed addressing. When a path is
determined, each ant locally updates the
pheromone),(kk sr of the path it travels, as shown in
Equation (3):

0),(-1),(  kkkk srsr ）（ (3)
 is a parameter representing the evaporation rate.
In SACS, the pheromone of the unrecorded path is

0),( kk sr , so according to Equation (3), its pheromone

is unchanged before and after the update, and both are 0 .
Therefore, in the local update, it is first found whether the
path pheromone is recorded in the triplet array. Only the
recorded path pheromone needs to be updated, and no
additional triple record needs to be added.

The second step selects next path in the loop iteration
until each ant obtains a feasible solution.

The third step is to adjust the feasible solution obtained
through 3-OPT local search. The local search attempts to
perform different permutations of the three paths of the
feasible solution, and selects an optimal permutation that
makes the local path the shortest. Through local search, a
better solution is obtained. Of course, other local search
algorithms also can be used, such as 2-opt, 2.5-opt or
Simulated Annealing, Tabu search, etc.

These operations do not involve updating and reading
the pheromone.

The fourth step is to compute the complete path length
of each ant’s solution. If there exists one path length,
which is less than the historical optimal solution, then
update the historical optimal solution according to this

complete path. Otherwise, the historically optimal solution
remains unchanged. Globally update the pheromone on the
path traveled by the historical optimal solution, as shown
in Equation (4) and Equation (5):

),(),(),(srsrsr   (4)





 




otherwise

tourbestgloablesrifL
sr gb

，0
),(,)(

),(
1

 (5)

 is a parameter expressing pheromone decay, and

gbL is the length of the globally optimal solution.

Pheromone global update is based on gbL . Since the
pheromone value is different from the original value after
the global update of SACS, the value of the pheromone
needs to be updated or inserted into the triplet array
according to Equation (4). If the triplet array still has free
space, then it is allocated directly and filled in by the new
value. When the number of triples reaches the set limit,
some of the original items need to be removed to make
room for the new pheromone. The SACS algorithm
provides three replacement policies.

IV. EXPERIMENTAL EVALUATION

In the experiments of this paper, the common
parameters related to the ACS algorithm are shown in
Table 1.

TABLE 1. MAIN COMMON PARAMETERS USED IN ACS AND SACS

Symbol value Description

0q NN /)20(
Probability of choosing the optimal
pheromone concentration path, N is
the total number of cities.

 3.0
The index of the path length, which
determines the importance parameter
of the pheromone compared to the
distance.

 0.2 Decay parameter for global
pheromone update

 0.01 Evaporation rate for local pheromone
update

maxiteration 100 The maximum value of iterations

nnll 32 Number of static candidate list items

flictsmaxHashCon 8 Maximum number of collisions when
a hash collision occurs

In order to evaluate the effect of sparse storage of
pheromone, the number of the pheromone triples is
changed from  N0.1  ,  N2.1  ,  N4.1  ,  N6.1  ,

 N8.1  to  N0.2  , and collect the best solution of 100
iterations, and the convergence, the execution time, the
replacement of the triples array, etc., and then evaluate
experimental results.

First, compare the solution quality of ACS and SACS
through experiments, as shown in Figure.1 SACS
implement three replacement strategies of Max, Min and
Rand. In the experiment, the number of ants was 100, 50
and 20.

As shown in Figure.1, when the number of ants is
equal to 100 for 15 TSP problems, compared with the ACS,
the quality of the SACS-Max solution is 2.2% lower than
the best solution by an average; SACS-Min decreased by
an average of 2.0%; SACS-Rand decreased by an average
of 1.8%. When the number of ants is equal to 50, for 15
TSP problems, compared with the ACS, the quality of the

173

solutions of the SACS series decreased by 1.7%, 1.4%,
1.2% on average. When the number of ants is equal to 20,
the average reduction in the quality of the solutions of the
SACS series is 1.0%, 0.7%, 0.6%.

Figure 1. Comparison between optimal solutions achieved by ACS and
SACS (the number of iteration steps is equal to 100, and the number of
ants are 100,50 and 20 respectively. The number of pheromone triplets

in SACS is equal to N2).

It can be seen from the data that, since the pheromone
is stored in a sparse triplet manner, the storage overhead of
the pheromone is greatly reduced. For the SACS, the
number of pheromone triplets is only N2 (the number
of pheromone matrix entries in the ACS is 2N entries).

From the quality of the solution, when the number of
ants is small, the solution quality of the SACS decreases
by a smaller amount than when the number of ants is large.
When the number of ants is large, the pheromone update
operation is more. The discarded pheromone item will be
more, which will cause the quality of the solution to
decrease more.

For different numbers of ants, the reduction of the
solution quality of the SACS is less than 2.5%.
Considering the influence of random numbers, it can be
considered that the quality of its solution is basically close
to the quality of the original ACS solution. The quality of
some TSP problems exceeds that of ACS. This shows that
the pheromone is effectively stored in a sparse triplet array
structure. It not only resolves the memory access conflict
caused by local pheromone update, but also alleviates the
impact of pheromone update caused by poor quality paths

in the path search process. Through the replacement
algorithm, the influence combination of heuristic
information and pheromone information is increased,
thereby greatly reducing the pheromone storage overhead.

But SACS performance is reduced compared with ACS.
The main reason is: when storing sparse pheromones based
on triplets, it is necessary to calculate the hash addresses
and resolve possible conflicts in order to quickly find the
corresponding triplets by direct hash addressing.

Although some additional calculations are appended,
sparse storage overhead of pheromones reduces more than
95%, so that it can support the solution of larger-scale
problems. From this point of view, SACS is still very
valuable.

V. CONCLUSION

This paper proposes a new ACS algorithm, SACS, By
analyzing the pheromone matrix of typical ACO
algorithms, it is found that it has a certain degree of
sparsity. Therefore, based on the original ACS algorithm, a
SACS algorithm based on pheromone sparse storage is
proposed, it is analyzed based on TSP problems. For
different TSP problems, the number of required non-
default pheromone triplets cannot be predicted and
evaluated. When the number of fixed allocated triplets is
exhausted, three policies are proposed for processing of
newly added pheromone triplets: Maximum replacement
policy (SACS-Max), minimum replacement policy
(SACS-Min) and random replacement policy (SACS-Rand)
Experiments show that the storage space requirement of
pheromone is reduced by more than 95%.

REFERENCES
[1] A.Aryania, H. S. Aghdasi, L. M. Khanli, Energy-aware virtual

machine consolidation algorithm based on ant colony system,
Journal of Grid Computing 16 (3) (2018) 477 491.

[2] M. D. Rezende, B. S. P. De Lima, S. Guimarães, A greedy ant
colony system for defensive resource assignment problems,
Applied Artificial Intelligence 32 (2) (2018) 138 152.

[3] H. M. Rais, T. Mehmood, Dynamic ant colony system with three
level update feature selection for intrusion detection., IJ Network
Security 20 (1) (2018) 184 192.

[4] K. M. Salama, A. A. Freitas, Classification with cluster-based
bayesian multi-nets using ant colony optimisation, Swarm and
Evolutionary Computation 18 (2014) 54 70.

[5] M. Dorigo, V. Maniezzo, A. Colorni, The Ant System : An
Autocatalytic Optimizing Process. European Conference on
Artificial Life 1991.

[6] L. M. Gambardella, M. Dorigo, Ant-q: A reinforcement learning
approach to the traveling salesman problem, in: Machine Learning
Proceedings 1995, Elsevier, 1995, pp. 252 260.

[7] T. Stützle, H. H. Hoos, Max min ant system, Future generation
computer systems 16 (8) (2000) 889 914.

[8] M. Dorigo, L. M. Gambardella, Ant colony system: a cooperative
learning approach to the traveling salesman problem, IEEE
Transactions on evolutionary computation 1 (1) (1997) 53 66.

[9] M. Guntsch, M. Middendorf, A population based approach for aco,
in: Workshops on Applications of Evolutionary Computation,
Springer, 2002, pp. 72 81.

[10] M. Dorigo, T. Stützle, Ant colony optimization: overview and
recent advances, in: Handbook of metaheuristics, Springer, 2019,
pp. 311 351.

174

