
The complexity attachment in modernization journey

Harveena Rambarassah
School of Computing Science and Mathematics

 Kingston University
 Kingston Upon Thames, KT1 2EE, UK

K0839075@kingston.ac.uk

Souheil Khaddaj
School of Computing Science and Mathematics

Kingston University
Kingston Upon Thames, KT1 2EE, UK

s.khaddaj@kingston.ac.uk

Abstract – |Often referred to as heritage systems, Legacy
systems have proven their efficacy and durability over the
decades but struggling to prove their viability in the digital
market. Legacy systems are being modernized and migrated
with a complexity that increases the cost and risk in those
journeys. Their underlying characteristics require an in-
depth assessment of the factors contributing to their
complexity. Therefore, this paper proposes a systematic
review to trace and analyze the emergence of characteristics
leading to complexity attachment and associated factors and
illustrate different techniques to assess factors.

Keywords - Legacy systems, Legacy characteristics, factors
and Legacy assessment

I. INTRODUCTION
The modernization of legacy software has always been

complex due to the process's risk, cost and time
constraints. Despite the many qualities of those systems,
software transformation and modernization have a high
cost and risk. Their constitution is substantial because they
have been deployed since the 1960's using the procedural
programming paradigm. They have grown into millions of
lines of codes with many years in development and
deployment and poor documentation. Moreover, they
suffer from many issues, including maintainability,
supportability, and scalability. They cannot adapt to the
latest development in hardware and software, such as
multicore architecture and microservices, nor the latest
technologies, such as edge computing, AI and data
analytics.
The risk and success rate of modernization is crucial as
business survival depends on those transitions by
migrating their core IT applications and business rules.
Hence, mitigating the current barriers of the modernization
journey should be revisited. Those barriers are factors
preventing a swift transition to a modern platform. We
believe their underlying properties should be re-assessed to
better understand their structural composition and
dependencies before embarking on a migration journey.

Thus, the paper aims to investigate the underlying
characteristics of legacy software and will demonstrate the
different factors contributing to the complexity of those
systems to improve and reduce the risk associated with
modernization. Along with assessing the influencers of the
modernization process, factors such as complexity, cost
and effort should also be evaluated before embarking on a
migration journey. We aim to use existing competencies
from the current system strategically and systematically to
reduce defects and failures. Therefore, different techniques

and cost drivers have been addressed to mitigate the
impact of factors such as costs, efforts, and risks.

This paper is structured in the following manner:
Section II explains why legacy modernization has been
adopted in the industry; Section III discusses different
underlying characteristics that the legacy system is
currently supporting; Section IV carries out a legacy
assessment to underpin different factors that are impacted
by complexity such as cost, effort, and risk and finally
section V concludes the paper with some suggestions.

II. LEGACY MODERNISATION
The modernization of legacy systems (LS) contradicts

the Lehman law of system evolution [19]. The adaptability
issue with modern interfaces and technology is forcing the
evolution of legacy systems [2]. The transfer to newer
technologies or platforms has many benefits like
competitive edge, happier clients, future-ready business,
unlocking big data opportunities, better performance and
reliability improvement [23]. The digital market adopted
those systems by a considerable percentage, forcing
sectors such as banking, insurance and life sciences to re-
strategize their core business structure [16]. However,
there are many challenges when dealing with legacy
systems. Primarily, its cumbersome nature from
underlying characteristics such as size and inflexibility of
code increases the risk of migration. Along with a
complexity issue, there is also a very high maintenance
cost to support those many lines of codes, with around
85%-of the IT budget spent on the maintenance of those
systems [3]. Modernization needs the evolution of modern
paradigms and obsolete technologies, businesses cannot
cater for digitalized market and offer a competitive edge.
Platforms cannot be versatile, agile, or flexible as they are
not built with modern technologies, resulting in loss of
business. Organization have not been able to cater for the
innovation budget due to the increasing cost of
maintaining legacy systems [3]. The unavailability of
technical documentation has increased both the cost and
staffing effort in understanding the system. Moreover, its
complexity has also progressed towards expensive
maintenance costs. LS have a retiring workforce, and
obsolete language needs such as COBOL, natural and mid-
range systems [7]. The evolution of newer platforms has
made businesses more innovative and profitable.

In summary, the complex nature of legacy has a high
effort and high-cost association during the modernization
process leading to migration risks. The legacy systems'
characteristics should be evaluated before starting a
modernization and migration process. They are business-

119

2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science
(DCABES)

2473-3636/22/$31.00 ©2022 IEEE
DOI 10.1109/DCABES57229.2022.00078

critical systems and are still being utilized despite their
pitfalls. However, to reduce the influence of high cost,
effort and risk in those journeys, the root cause should be
evaluated. Thus, by beginning the process by assessing
legacy characteristics, contributors can be understood, and
their impacts can be mitigated.

III. UNDERLYING CHARACTERISTIC IN LEGACY
Overview-Systems should limit development features

that lead them to a complex ecosystem. Characteristics
such as long-time scale, no- technical documentation and
code inflexibility are indicators of the need for
modernization. They prevent the system from evolving,
thus becoming too expensive to maintain [8]. They
prevent businesses from scaling, gaining profit, market
value or becoming digital. However, despite many years of
deployment, if a system runs within an organization's
forecasted budget is not considered to be supported by
legacy characteristics. Hindrances to modernization are:

Long-time scale – It represents the lineage from when a
system was built until its deployment and utilization. Some
legacy systems were developed in the 1960's and are still
efficient for daily business needs. However, the lineage has
accumulated entropy in those systems, making them very
complex. During deployment, there has been a surplus of
lines of codes, redundant codes and unexplained
dependency inheritance. The internal complexity has
become complex and costly to maintain and has a higher
probability of defects [6].

Documentation - Systems need artefacts depicting their
growth. However, LS are built without any technical
documentation and are unsuccessful in updating the
maintenance status of the system. This situation leads to
the disruption of the system's nature as codes are added
without any knowledge. Generally, for system review or
for maintenance activity, technical documentation and test
cases are checked by programmers. In the LS environment,
not having a guide would give programmers the liberty to
add to system functionalities and increase duplicity.
Moreover, organizations have failed to practice quality in
their organizational culture.

Inflexible-codes –This characteristic influences the
code and the system infrastructure. The inflexible code
results in an accumulation of irrelevant codes in the
system. Many new functionalities are being added without
considering other interfaces and dependencies. Conversely,
the accumulation of lines of codes impacts the system size.
This is also why a LS is referred to as cumbersome. The
system size is directly related to the number of defects and
the underlying complexity. The complexity is high when
the system has many components and associated
dependencies [2]. Outdated dependencies affect the system
performance and require more time and effort. The relative
complexity metric has been previously used to enhance
quality in project management for the branching out of
bugs [1]. Those mentioned characteristics are becoming a
barrier to progress towards a newer generation of
technologies and principles.

Summary – LS ecosystem creates confusion between
co-dependency and dependency, eventually increasing the
size of the system over the years. Therefore, inflexibility of
codes and complexity results in inaccurate or poor
tractability of the system lineage. Also, the purpose of the

system may not be determined. Hence, there is a need to
scrutinize those systems to extract their business logic [8]
[7]. The logic can be transferred to a modern platform but
without transferring the underlying characteristic. The
complexity assessment of the legacy is essential for
business survival before embarking on a migration
process. By doing so, complexity and dependency would
be identified before performing rule extraction, and risk
can be controlled.

IV. LEGACY ASSESSMENT
The business survival demands modernization,

functional expansion and the integration of digital
transformation projects that LS could not cater for. It is
because of its underlying bulky nature and cost. The
current legacy migration is the transfer of the current
system to a target system or desirable platform.
Nevertheless, there are factors contributing to complexity
and are perceived as hindrances to the modernization
journey [5]. Therefore, evaluating the legacy system is
inevitable to understand the impact of the current
underlying characteristic of legacy systems. Presumably,
assessing underlying characteristics would limit
architectural disruption and reduce modernization
cost/effort and risk. The primary stage of the
modernization process should be scrutinizing the system to
demonstrate which factors contribute to complexity. Those
factors are as illustrated below:

A. Complexity factor
The inherited complexity and unmanageable control

structures are perceived as complex characteristics
affecting the system performance [9]. Moreover, graph-
based metric measures complexity at the architectural
level. Thus, communication, dependencies and
functionalities could be comprehended. Consequently,
dependencies between the component of the system could
be improved. In such a model, unknown variables can be
found, enabling us to reduce any potential risk or any
potential maintenance cost [11],[15],[10]. The study of
complexity is on the estimation of different dependencies
and co-dependencies of the system size. However, the vital
components from the entropic nature of the system should
be known. Hence, the root of variables should be traced to
prevent the impact on systems. A complexity assessment
can reveal a complexity index since cyclomatic complexity
measures the decision logic found in one software module
[2]. The complexity involvement for legacy should be
assessed to evaluate the degree of importance or the degree
of dependency of modules. Moreover, the essence of such
a metric is to assess and manage complexity and is also
seen as a maintenance activity [1], [12], [9]. It shows to
what extent the system is complex. We believe accurate
estimation is imperative in modernization to limit risk. The
McCabe complexity range assesses a program's linear
independent path and categorizes its complexity level [2].
Complexity evaluation should be appraised against the
complexity range [4]. The ideal system would be a system
falling in the first range of low complexity and low
cohesion [13], [2]. The lowest complexity range structure
is ideal for modernization and migration due to its low risk
and low maintenance cost from dependencies. The
system's modularity facilitates the anticipation of

120

cascading risk and provides a better maintenance service.
By decomposing the system, parameters or variables for
the component become more visible [11]. The contributors
of complexity have been associated with costing, effort
and risk. Therefore, assessing complexity efficiently
measures discrepancy along with the dependency
accumulated in legacy.

B. Cost and Effort factor
Overview: Project failures result from inaccurate

estimation during software production. There are many
practices of project management that could be beneficial to
limiting failures during software development, such as
software cost estimation [21]. Metrics can be used to
calculate the project cost from the estimated project size.
Moreover, the size parameter in the complexity review can
eventually be used for cost estimation along with the
duration of the effort, as in COCOMO [22]. We shall focus
on cost drivers leading to a high maintenance cost in
legacy, followed by the effort factor.

 Cost factor- The development life cycle of software is
broken down into different parts of project management
and envisages the project duration, time and cost of each
phase in the development. Unlike system development
costs, legacy costs imply maintenance and migration costs.
The maintenance cost is derived from the number of lines
of codes the system needs to support. In legacy, cost
estimation uses the bottom-to-top approach as part of the
reverse engineering process since they have existed and
operations have been performed for some time [14]. Cost
drivers are 1) Technical Debt is a metaphor for
accumulating unresolved issues in a software project. They
come from the legacy systems' characteristics and result in
high maintenance costs and slowing development speed.
To overcome technical debts, refactoring has been applied
to control costs. The concept of refactoring has been used
as a quality technique to manage costs from cascading
defects [20]. 2) Six-sigma: The effectiveness of
organization quality assurance activities rating (EQAR)
has been applied to organizations to eliminate or minimize
residual defects. The effectiveness can be measured using
the defect density of the delivered product, also called the
six-sigma value. The principle of six sigma underlines the
density of defects over opportunities/lines of codes. The
optimum rating for 6 sigma is 3 defects per 1 million
opportunities [14].

Effort factor- The effort estimation illustrates 1) how
big is the legacy system, 2) how long will it take to
modernize the system 3) how many people will be required
on the project and at what rate per hour. Effort evaluates
the human involvement in the software development
activities. Moreover, the number of lines of code of the
system determines the size parameter and, eventually, the
effort required. Human involvement is addressed as staff
months and may also be used to address new defects in
projects [22],[18]. The productivity ratio approach uses
KSLOC per staff month to convert the estimated size into
the effort. It was used for a retail supply system (RSS) to
estimate the duration using the estimated effort from the
approach. Additionally, if an increment is estimated to
need 477 staff months of effort, the duration is about 22.5
months or about 21 staff members. The cost estimation
model illustrates the estimated effort and the estimated

duration of the project. On the hand, estimated effort
considers 1) phase distribution of effort and 2) phase
distribution of labour, whereas estimated duration is about
phase distribution of duration [19]. Therefore, performing
a cost assessment on supporting functions can denote the
cost of support and its maintenance cost [11], [15].

Summary –A complex function with high cost and
effort can be risky to migrate due to its core business
functions. Therefore, before embarking on a modernization
journey, the system needs to be evaluated to understand
the factors contributing to its complexity. To do so, cost
estimation can be used along with understanding the
modernization project's effort and duration. Though, by
evaluating different cost drivers, they can be used to
control the maintenance cost. Therefore, a less complex
system can be migrated to the target system by mitigating
risk in modernization. Estimation techniques can also
assess the importance of business logic in a complex
function. Therefore, evaluating cost and effort along with
the dependency of components can provide a better
direction to which components should be migrated to the
target platform. By doing so, potential risk can also be
visible and mitigated to reduce failures [4]. In the risk
factor section, risk approaches have been discussed.

C. Risk Factor
In legacy systems, risks are inherent in the software

project. All development projects of this scale carry a
certain amount of risk. Despite the best practices of
software development to mitigate them, defect still exist in
modernization [6]. Therefore, to tackle risks, we should
investigate the root cause of factors. Due to the numerous
unmanageable lines of code, managing risk and controlling
factors such as cost and effort for modernization is
difficult. Assessing these systems is essential to trace the
unknown sources of variables. The modernization journey
needs effective risk management and mitigating
modernization plan rather than just a migration approach
for transition. Moreover, when a system's complexity and
risk are high, it is perceived as the right candidate for
modernization. Hence, assessing the current system and a
modernization plan is necessary to mitigate risk.
Additionally, the risk approach should be part of the
modernization process to mitigate failure during a legacy
transition; for example, the risk-managed modernization
approach and Case base reasoning.

Risk managed modernization (RMM) approach is a
step-by-step approach for managing risk as part of the
modernization process [19]. The key steps are 1) Portfolio
analysis: It is an assessment of the most appropriate
candidate for modernization by measuring the technical
quality of the system against the business value of the
system. 2) Reverse engineering: aims to understand the
purpose of the legacy system. Doing so reduces the
modernization effort and mitigates the risk of potential
failures. The system is scrutinized in terms of its
architecture, technology and components. 3)
Modernization strategy: There are different modernization
strategies along with the individual migration condition of
the system. Regardless of the modernization strategy, the
modernization effort must cater for changing requirements,
technology change or compatibility of technologies.
Strategies are re-development, incremental migration,

121

partial migration and wrapping. 5) Estimation of resources:
The final stage of RMM is to perform estimation for
executing the migration strategy.

CBR uses the modelling approach and mitigating risks
of failures of similar software projects system. The model
uses past case scenarios' problems and mitigates them into
the current case. Features and attributes are predicative
characteristics in the for-caste model. Those characteristics
have been described as drivers in understanding the
complexity of the files generated, used, maintained or the
number of reports generated [17]. CBR can be merged
with any software cost estimation technique to reduce
failures from factors. For example, CBR can be combined
with functional point analysis to reduce complexity in
terms of the size of the system, effort, duration and the cost
of development. The four stages of the R4 model;
Retrieval: Retrieves similar cases to target problem,
Reusability: Reuses past solutions, Revise: To adapt the
previous solution to new cases. Retention: To apply the
solution to the target and retain the solution in the case
based.

V. CONCLUSION AND FUTURE WORK
Despite the huge maintenance cost and underlying

issues from known features, Legacy systems have been
functional for day-to-day operations. However, due to the
evolution of modern paradigms and digitalization, the
perspective of businesses was changed. The risk attached
to business rules made business owners reluctant to adopt a
modernization journey. Our contribution to this paper is to
assess the underlying characteristic of LS and understand
the influence of factors on complexity. Thus, factors can
be controlled and failures can be limited during
modernization. Estimations are believed to be a significant
part in project planning at the earlier stage of development,
although the probability of inaccuracy could be higher.
Business logic, interfaces and dependencies support a
legacy system, thus, providing readily available data for
evaluation. The efforts and costs of those modules could
be measured. The complexity can be avoided by knowing
and evaluating the inter-dependency between modules.
Therefore, we have used a complexity assessment, cost &
effort assessment, and risk management modernization
plan as the critical techniques in our work. By doing so,
the risk of failure can be mitigated, modernization costs
can be reduced, and systems can be modernized with
managed complexity. While investing in existing
methodologies, there was a need to address a change
management approach to reduce the impact of the change
from the complexity assessment. Furthermore, the
predicative model for modernization and novel risk-
modernization approaches for software engineering can be
crafted.

REFERENCES
[1] Munson, J.C. and Khoshgoftaar, T.M., 1992. Measuring dynamic

program complexity. IEEE software, 9(6), pp.48-55.
[2] Watson, A.H., Wallace, D.R. and McCabe, T.J., 1996. Structured

testing: A testing methodology using the cyclomatic complexity
metric (Vol. 500, No. 235). US Department of Commerce,
Technology Administration, National Institute of Standards and
Technology.

[3] ZDNet (2014), “Here’s what your tech budget is being spent on”,
Available on:https://www.zdnet.com/article/heres-what-your-tech-
budget-is-being-spent-on/ (Accessed: 03 August 2018).

[4] Méndez, M. and Tinetti, F.G., 2014. Integrating Software Metrics
for Fortran Legacy into an IDE. In XX Congreso Argentino de
Ciencias de la Computación (Buenos Aires, 2014).

[5] BLUEphoenix solutions (2013) Legacy Forensics. Available at:
https://drive.google.com/file/d/1IJ0GQANn_CAUi8FeFGKr5Ijwy
5hUY-fb/view?usp=sharing (Accessed: 07 July 2020).

[6] C. Birchall, Re-Engineering Legacy Software. Manning
Publication Co; New York, pp 10-50, 2016.

[7] R.Khadka, A.Saeidi, A.Idu, J.Hage,“Legacy to SOA Evolution: A
Systematic Literature Review”, Available
at:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.736.1
357&rep=rep1&type=pdf .(Accessed: 10 December 2018)

[8] M. L. Brodie and M. Stonebraker, Legacy Information Systems
Migration: Gateways, Interfaces, and the Incremental Approach.
San Francisco,CA: Morgan Kaufmann Publishers Inc, 1995.

[9] Shao, J. and Wang, Y., 2003. A new measure of software
complexity based on cognitive weights. Canadian Journal of
Electrical and Computer Engineering, 28(2), pp.69-74.

[10] Wu, L., Sahraoui, H. and Valtchev, P., 2005, June. Coping with
legacy system migration complexity. In 10th IEEE International
Conference on Engineering of Complex Computer Systems
(ICECCS'05) (pp. 600-609). IEEE.

[11] Cherkaskyy, M. and Sadek, A.S., 2004, February. The levels of
program complexity. In Proceedings of the International
Conference Modern Problems of Radio Engineering,
Telecommunications and Computer Science, 2004. (pp. 396-397).
IEEE.

[12] Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A., 2001.
Complexity and expressive power of logic programming. ACM
Computing Surveys (CSUR), 33(3), pp.374-425.

[13] Kim, K., Shin, Y. and Wu, C., 1995, December. Complexity
measures for object-oriented program based on the entropy. In
Proceedings 1995 Asia Pacific Software Engineering Conference
(pp. 127-136). IEEE.

[14] Chemuturi, M., 2010. Mastering software quality assurance: best
practices, tools and techniques for software developers. J. Ross
Publishing.

[15] A.Yadav, A.Rajavat (2014), “An efficient process to measure the
cost of re-engineering project”, Available at :
http://www.digitalxplore.org/up_proc/pdf/103-141145157747-
52.pdf (Accessed: 25 September 2018).

[16] Gartner (2015) “Digital demand in banking industry and impact on
legacy system”. Available at:
https://www.gartner.com/en/documents/3348017(Accessed: 01
March 2016).

[17] Mahar, K. and El-Deraa, A., 2006. Software project estimation
model using function point analysis with cbr support. In
Proceedings of IADIS Conference on Applied Computing.

[18] Azzeh, M., 2013, March. Software cost estimation based on use
case points for global software development. In 2013 5th
International Conference on Computer Science and Information
Technology (pp. 214-218). IEEE.

[19] Seacord, R.C., Plakosh, D. and Lewis, G.A., 2003. Modernizing
legacy systems: software technologies, engineering processes, and
business practices. Addison-Wesley Professional.

[20] Jones, C., 2012. Software quality metrics: three harmful metrics
and two helpful metrics. Namcook Analytic LLC.

[21] Galorath, D., 2006. The 10 step software estimation process for
successful software planning, measurement and control.

[22] Thein, K.T. and Khin, T.T., Software Cost Estimation Using
Constructive Cost Model (COCOMO II) (Doctoral dissertation,
MERAL Portal).

[23] altexsoft software r&d engineering (2020) Whitepaper: Legacy
system modernization: How to transform the enterprise for Digital
future. Available at:
https://drive.google.com/file/d/1hUJcaiPsWSw3JUbBsR800U1Dw
HKV-qfQ/view?usp=sharing (Accessed: 26 May 2020).

122

