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Abstract—A variety of issues, including classification, link
prediction, and graph clustering, have been solved using graph
neural network (GNN), an efficient method for handling non-
Euclidean structural data. Another effective and reliable math-
ematical tool for classification and regression applications is
support vector machine (SVM). We hope that this paper will
help readers gain a better knowledge of the latest developments
in graph neural networks and how they are used in a variety of
fields. We also describe current research on using support vector
machines for prediction and classification problems. Following
that, a comparison between SVM and GNN is made, and the
results are discussed.

I. INTRODUCTION

Significant advances in speech recognition, image pro-

cessing, and text translation have been made thanks to the

development of machine learning and deep learning. These

tasks represent data as simple sequences or regular grids in

Euclidean space. However, not all data can be represented

as sequences or grids, such as biological networks, social

networks, complex file systems, and a majority of data are

unstructured. Graph neural networks proposed in [12] use

neural networks on graph-structured data. A graph model

is used to depict a group of items and their relationships.

Molecular structures can be modeled as graphs in which

the atoms can be represented as nodes and the bonds can

be represented as edges. Numerous graph issues, such as

traffic forecasting, object detection, molecular fingerprints, and

human-object interaction are tackled by GNN due to its ability

to handle non-Euclidean data structures.

An overview of graph neural network model is available

in several publications. In [14], the authors introduce a new

method to divide GNN models into four categories and they

provide the most detailed analysis of deep learning techniques

for graphs that have been done so far. The authors in [22]

give a general design step of GNNs and an overview of

their computational modules. The application scenarios are

further divided into structural and non-structural scenarios

using systematic categorization. In addition to examining the

most common GNN models, we also compare them with SVM

models.

Support vector machine is a supervised algorithm based

on statistical learning theory, which is extensively used in

regression and classification analysis. It aims to determine

a decision function, called a hyperplane, in which the data

points are classified distinctly with the largest margin. The

nearest points to the hyperplane, which are dispersed on both

sides of the hyperplane, are referred to as support vectors.

The strength of SVM in solving nonlinear problems makes

it widely applicable to analyze complex systems. The work

[5] summarizes the application of SVM in building energy

consumption, including the complete theoretical background

and parallel computing methods to speed up the training

process.

There are numerous studies combining artificial neural net-

work (ANN) and SVM for different tasks, such as face image

recognition, spam detection, and energy production forecast.

While other studies have compared ANN and SVM, no work

has been done to compare GNN and SVM. In this paper (i)

we present a brief overview of several GNNs and how they

can be applied in various fields, (ii) we summarize a list of

classification and regression tasks to which SVMs have been

applied, and (iii) we compare the similarities and differences

between GNN and SVM.

This paper is structured as follows: Section II introduces

several GNN models. Section III presents the general formu-

lation of SVM and previous research works over applications.

Section IV discusses the similarities and differences between

GNN and SVM. Section V concludes this article.

II. GRAPH NEURAL NETWORKS

Graph models are used to illustrate the relationships be-

tween items in a group, as well as the representations of

items themselves. A graph is defined as G = (V,E), where V
corresponds to the set of nodes, and E corresponds to the set

of edges. Let vi ∈ V stands for a node and eij = (vi, vj) ∈ E
stands for an edge. The neighborhood of a node v can be

defined as N (v) = {u ∈ V |(v, u) ∈ E}. The adjacency matrix

of a graph can be represented by A. The feature vector of the

node v is denoted by xv ∈ R
d, where d is the dimension of

a node feature vector. The node feature matrix of a graph is

denoted by X ∈ R
n×d, where n is the number of nodes. The

feature vector of the edge (v, u) is denoted by xe
v,u ∈ R

c,

where c is the dimension of an edge feature vector. The edge

feature matrix of a graph is expressed as Xe ∈ R
m×c, where

m is the number of edges.

A. Recurrent Graph Neural Network

GNN proposed in [12] details the structure, calculation

method, optimization algorithm, and process implementation.
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With GNN, what is learned is the state embedding of each

node’s neighbors, which can be utilized to produce the output

like a node’s label. The state embedding hv and the output ov

take the form

hv = f(xv,x
e
(v,u),xN (v),hN (v)),

ov = g(hv,xv),

where xN (v) and hN (v) represent the states and the features of

v’s neighbors, respectively. f(·) is a parametric function that

expresses a node’s dependence on its neighborhood. The local

output function, g, provides information on how the output is

generated. When it comes to training a model, gradient descent

is commonly used as the algorithm to do so.

Gated graph neural network (GGNN) [10] is characterized

by the use of Gated Recurrent Units (GRU) and unrolled

recursion for a fixed number of steps T . Hence, f no longer

needs to be a contraction map, and iteration does not need to

converge to the output. The model can output a value for each

node to solve node classification, or it can output a value for

the entire graph to solve graph classification.

B. Convolutional Graph Neural Network

Convolutional graph neural networks are classified into two

primary subcategories: one that uses spectral information and

one that uses spatial information.

Spectral convolutional GNN: Inspired by ChebNet, the

authors in [7] propose graph convolutional neural network

(GCN), which is equivalent to an approximation of first-order

ChebNet. According to layer-wise operation, the propagation

rule for different layers of GCN takes the form:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)),

where Ã = A + IN refers to the adjacency matrix plus

self-connections. IN represents the identity matrix. D̃ii =∑
j Ãij . W (l) refers to a trainable weight matrix for a

particular layer and σ(·) is the activation function.

Adaptive Graph Convolution Network (AGCN) [9] takes

data of arbitrary graph structure and size as input. It constructs

a unique residual Laplacian matrix for each sample in batch

and learns distance metric for graph update.

Diffusion-Convolutional Neural Network (DCNN) [1] ex-

tends convolution operation to generate graph-structured data

through a diffusion process. It defines the probability of jump-

ing from a node to one of its neighbors. Node classification

and graph classification are both applicable to this model.

Spatial convolutional GNN: GraphSAGE [6] aggregates

feature information of neighboring nodes N (v) and directly

generates embeddings for unseen nodes. Each node v aggre-

gates the representations of neighbor nodes hk−1
N (v) at k − 1

step into a vector hk
N (v),

hk
N (v) ← AGGREGATEk({hk−1

u , ∀u ∈ N (v)}).

The node’s representation hk−1
v is then concatenated with the

aggregated neighborhood vector hk
N (v) to get the representa-

tions hk
v ,

hk
v ← σ

(
W k · CONCAT (hk−1

v ,hk
N (v))

)
.

The output is the aggregation of the neighbor representations

zv at depth K. The embedding zv of node v is obtained

through forward propagation. Then standard stochastic gra-

dient descent and back propagation algorithms are performed

to optimize parameters.

C. Graph Attention Network

Graph Attention Network (GAT) [13] proposes an attention

mechanism to learn the weights of the node’s neighbors. Self-

attention is performed over all nodes

evu = a(Whv,Whu),

where W ∈ R
F ′×F is a weight matrix that applies to

every node, with F and F ′ indicating the number of input

and output features in each node. Generally, self-attention

assigns importances to all nodes in the graph, which loses

structural information. Masked attention can be used to solve

this problem, considering only u ∈ Nv .

D. Graphs

Heterogeneous Graph: There are few studies applying

GNN to heterogeneous graph, which has many different kinds

of nodes and links. Neighbor Averaging over Relation Sub-

graphs (NARS) [15] are extended to heterogeneous graphs

for node classification. NARS samples a certain number of

unique subsets from a certain edge relationship type of a

heterogeneous graph, and for each sampled subset, retains the

edge relationship belonging to the subset, and establishes a

subgraph.

Large Graph: Several studies have taken advantage of

subgraph sampling as a method of training when dealing with

large graphs. For instance, we can handle large graphs by

sampling a subgraph and performing graph convolutions on

nodes in the sampled subgraph. To train the model, there are

two methods that can be used. One is to treat each subgraph as

a minibatch, and the second is to combine several subgraphs

into a minibatch.

III. SUPPORT VECTOR MACHINES

Support vector machine can handle linear/nonlinear classi-

fication and regression. When the data are linearly separable,

SVM can divide the data by creating a hyperplane that

maximizes the margin between the classes. In the case that

the data cannot be linearly separated, then the data can be

mapped to a higher dimensional feature space by applying a

proper kernel function. Once the data have been mapped to

a higher dimensional feature space, the algorithm determines

the maximal margin hyperplane within the feature space.
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A. Theoretical Framework

Suppose there are n samples in total. Let vector xi ∈ R
n

denotes the i-th features sample, and yi ∈ R indicates the value

of the corresponding xi. All of the samples are, therefore,

expressed as (x1, y1), (x2, y2), . . . , (xn, yn). The hyperplane

takes the form

f(x) = ωx+ b,

where f(xi) is an estimate of yi. In this equation, ω and b
are coefficients. In the case where y is a continuous variable,

f(x) can be used to predict the value of yi corresponding to

the new feature xi. If yi ∈ {−1,+1}, this method can be used

for classification problems.

Model training refers to the process of finding function

f(x), determining the values of ω and b. The goal is to make

the margin as large as possible, then SVM can be formulated as

an optimization problem. Besides, nonlinear decision functions

can be implemented by utilizing kernel functions

min
α

1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi · xj)−
n∑

i=1

αi

s.t.

n∑
i=1

αiyi = 0

0 ≥ αi ≤ C, i = 1, ..., n,

(1)

where α is Lagrange multiplier and K is kernel function. By

breaking the optimization problem down into sub-problems

and tackling each one separately, the sequential minimal opti-

mization (SMO) method can be utilized to solve the quadratic

function mentioned above.

B. Applications

SVM has been extensively applied to regression tasks,

such as the prediction of energy consumption [11, 21]. The

authors in [3] discuss the viability and effectiveness of SVM

in the field of forecasting building load and apply it to

predict building energy consumption in the torrid zone. In

[4], the authors show the theoretical basis of SVM and apply

it to predict electricity consumption. Considering one year’s

measured data, this was done by training with the first six

months of the dataset, validating with the following three

months, and testing with the final three months. Based on

the results, it appears that SVM has good performance. In

[8], the authors not only predict the electricity consumption,

but also re-predict the daily electricity consumption within a

year with one day lag to determine the influencing factors. To

improve the accuracy of the predicted results, the authors in

[16, 17] present a simulation method that can be used to collect

sufficient historical data on the energy consumption of various

buildings. Additionally, they adopt a parallel method of SVM

on such large data to accelerate the training process. Training

SVM is a quadratic optimization problem that requires a lot

of time and memory, making it difficult to apply SVR to

large-scale problems. A new parallel implementation based

on decomposition method called Map-Reduce parallel SVM

(MRPsvm) is proposed to speed up the training process on

large scale datasets [19]. Since there are lots of factors that

influence energy consumption, choosing the proper features

is also important. The authors in [18, 20] focus on reducing

model complexity without compromising performance by se-

lecting features. The proposed method has been shown to be

effective in selecting valid feature subsets in numerous exper-

iments. Minimal redundancy maximal relevance is adopted as

an algorithm for the selection of features in short-period load

forecasting [2].

In addition to its application in regression, SVM has nu-

merous other applications in classification as well, such as

face detection, text categorization, and cancer classification.

For instance, the face recognition problem is classifying the

feature vector at each pixel into a face or a non-face.

IV. COMPARISON

A. Multi-class Classification

GNN and SVM are the most popular algorithms for classi-

fication in machine learning algorithms. GNN supports multi-

class classification, the number of neurons in the output layer

of GNN depends on how many classes are to be classified.

SVM is a binary classifier and doesn’t support multi-class clas-

sification natively. However, multi-class classification prob-

lems can be decomposed into multiple binary classification

problems. Nevertheless, it is possible to decompose multi-

class classification problems into several binary classification

problems to solve them. This approach consists of mapping

the data into a higher dimensional space to obtain a mutual

linear separation between each of the two classes that are being

analyzed.

B. Classification Accuracy

Training sample size can influence the performance. The

model’s accuracy can be increased by providing more training

data. The use of a normalization method before feeding the

training data to different models can also improve accuracy.

When solving classification problems, kernel functions are

crucial since they convert data into the desired form, and

choosing different SVM kernel functions will result in dif-

ferent prediction accuracy.

C. Optimization of the Parameters

GNN optimizes the parameters via stochastic gradient de-

scent optimization algorithm. The most widely used optimiza-

tion approach in machine learning, particularly deep learning,

is stochastic gradient descent. SVM can be modified as a

quadratic programming problem. The function is optimized

subject to linear constraints on its variables. SVM is solved

by sequential minimal optimization, a quadratic programming

algorithm that identifies possible solutions by iteratively com-

puting analytical solutions to a series of smallest possible sub-

problems.
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V. CONCLUSION

A lot of interest has been drawn to graph neural networks

as a potential solution to graph-related problems. With the

help of SVM, we can perform regression and classification

functions on linear and non-linear data. In this paper, we draw

a comparison of these two machine learning algorithms and

give a brief review of the most recent GNN models. Then

we introduce the general formulation of nonlinear SVM and

broad applications. Finally, we compare GNN and SVM for

classification tasks.
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