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Abstract—Heat shock proteins (HSPs) belong to stress
proteins. The functions of HSPs are mainly reflected in three
aspects: molecular chaperones, regulation of apoptosis and
immune responses. Recent studies have shown that there is a
certain correlation between HSPs and tumor cell. HSPs are
participated in the invasion, proliferation and metastasis of
tumor cells. Therefore, developing an accurate model for
identification anti-tumor HSPs is a key step to understand
molecular functions of HSPs and human tumor diseases. In
this study, we propose using deep learning methods to
identify anti-tumor HSPs. To seek out the optimal model for
the dataset, several hyper-parameters are optimized
according to the results of 10-fold cross-validation. Finally,
the performance of the proposed model is further
determined through an independent dataset. The
experimental results indicated that the proposed model
could classify anti-tumor HSPs with accuracy (ACC) of
93.76%, sensitivity (SN) of 92.80%, specificity (SP) of
93.33%, and Matthew’s correlation coefficient (MCC) of
86.39% on the 10-fold cross-validation. Compared with
other deep learing methods, using convolutional neural
network (CNN) can achieve a significant improvement for
identifying of anti-tumor HSPs.

Keywords-HSPs; anti-tumor function; position specific
scoring matrix; convolutional neural network

L INTRODUCTION

Heat shock proteins (HSPs) belong to stress-induced
proteins. HSPs can inhibit or reverse the denaturation of
cellular proteins under extreme conditions. They are
widely found in prokaryotic and eukaryotic cells. Because
of their physiological and protective effects in cells, HSPs
are also known as molecular chaperones [1]. In addition to
being a molecular chaperone, HSPs also have the function
of regulating cell apoptosis and participating in body
immunity. Recent studies have found that HSPs are
overexpressed in various tumor cells and participated in
the invasion, proliferation, differentiation and metastasis of
tumor cells. In clinic, HSPs can be used as biomarkers for
cancer diagnosis, to track disease development or response
to treatment, and also as therapeutic targets for cancer
treatment [2].

According to molecular weight, HSPs are generally
categorized into six major families: HSP27, HSP40,
HSP60, HSP70, HSP 90 and HSP110 [3]. Because HSPs
play a significant role in regulating cellular function and
response during tumor development and metastasis, many
researchers have studied the relationship between heat
shock proteins and tumors. Regimbeau et al. described the
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function of HSPs from the aspects of anticancer
therapeutics targets, disease monitoring biomarkers and
cancer vaccines [1]. Albakova et al. outlined the
relationship between HSPs and cancer and proposed the
model for identification of HSPs in cancer [2]. Wu et al.
elucidated the function of HSPs in pharmacology and
cancer biology [3]. Zheng et al. studied the tumor immune
effect of heat shock protein gp96 [4]. Elmallah et al.
discussed the function of Hsp70 in cancer, especially
focusing on the extracellular membrane-bound Hsp70 [5].

In the past decade, many computational methods have
been developed for predicting HSPs. They commonly
focused on two aspects, one is to identify heat shock
proteins or not, the other is to classify HSP sequences into
one of the six HSP families. In 2013, Feng et al. first
identified the heat shock protein families using support
vector machine and jackknife test [6]. Subsequently,
Ahmad et al. studied the classification and prediction of
heat shock protein family based on a variety of machine
learning algorithms and multiple features [7]. In 2020, Jing
et al. classified heat shock protein family using SVM
algorithm and combined features [8]. Recently, Min et al.
proposed a novel deep learning algorithm DeepHSP to
classify both non-HSPs and six HSP families
simultaneously [9]. With the successful application of deep
neural network in many fields, researchers began to use it
in biomedicine, such as protein secondary structure
prediction, cancer prediction and drug design, and so on.
These studies have achieved good performances.

HSPs play an important regulatory role in the
development, diagnosis, and treatment of tumor. To our
knowledge, there are no reports on the identification of
anti-tumor heat shock proteins. Based on the above reasons,
it prompts us to establish an accurate model to identify
anti-tumor HSPs. In this study, we proposed a deep neural
network model based on evolutionary information feature
extraction method to classify anti-tumor HSPs. The
experimental results indicated that our model could
identify anti-tumor HSPs with ACC value of 93.76%, SN
value of 92.80%, SP value of 93.33%, and MCC value of
86.39% on the 10-fold cross-validation dataset. Compared
with other prediction methods, using CNN deep learning
network can achieve a significant improvement for
identifying of anti-tumor HSPs. The accurate identification
of anti-tumor HSPs could assist people in comprehending
the role of anti-tumor HSPs in tumor related diseases and
designing drugs for promoting treatment.



II.  MATERIALS AND METHODS

A. Dataset

In this study, all the sequences come from UniProt
database (https://www.uniprot.org). The proposed problem
is to classify the HSPs with anti-tumor function and those
without anti-tumor function. Therefore, we use the HSPs
dataset with anti-tumor function as positive data and a
dataset of HSPs without anti-tumor function as negative
data. The obtained dataset was screened from the
following two aspects: (1) the amino acid sequences with
less than 50 residues were removed; (2) non-standard
letters containing "B", "J", "O", "X" or "Z" were deleted.
CD-HIT was applied to decrease the sequence homology,
here sequence similarity was set to 50%. After this process,
the dataset includes 290 HSPs with anti-tumor function
and 502 HSPs without anti-tumor function. Dataset can be
formulated as follows:

Set = Set™ | Set™ (1)
Set is constituted with Set” and Set” . Set” indicates

the positive dataset (the 290 anti-tumor HSPs), Set”
indicates negative dataset (the 502 non-anti-tumor HSPs).

The dataset was randomly divided into the cross-
validation dataset and the independent dataset. There were
200 anti-tumor HSPs and 300 non-anti-tumor HSPs in the
cross-validation dataset. Remaining protein sequences
were used as the independent dataset, there were 90 anti-
tumor HSPs and 202 non-anti-tumor HSPs.

B.  Deep neural network structure

Deep learning is considered a powerful method, which
can automatically learn features in the neural network
model. In the model, abstract high-level features are
composed of low-level features, which are more suitable
for discovering the distributed feature of data. In this study,
we construct a deep learning framework based on
convolutional neural network to accurately predict the anti-
tumor HSPs. CNN model has been proved to be effective
in many fields, such as in the computer vision domain,
natural language processing systems and biomedical field
[10], and so on.

In our model, CNN is composed of an input layer,
multiple hidden layers and an output layer. It takes the
numerical vector transformed by PSSM algorithm as input
to the network. Our model includes two convolution layers,
the number of filters in each layer are set to 64 and 128
respectively. The size of convolution kernel is set to 3.
Padding is set as same to keep the dimension. And
activation function in the convolution layer adopts a
rectified linear unit (ReLU) for the normalized results. In
order to prevent over-fitting, we add a dropout layer to the
model to enhance the robustness of the neural network
model.
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Also note, we have added another three fully connected
layers, which have 128, 64 and 32 neurons, respectively.
Here ReLU is used as the activation function to classify in
the model construction process. We use softmax function

as the activation function of the network output layer. The
softmax function can normalize the output value and
convert the output results into the form of probability. The
loss function in the output layer uses the binary cross
entropy function, which can predict the difference between
the real value and the predicted value, and judge the
quality of the prediction models through the loss value.
The formula for calculation is as follows:

logloss(t, p) =—((1- p) xlog(l - p) + 1 xlog(p)) (4)

The prediction framework of anti-tumor HSPs is
shown in FIG.1. Our model is implemented in Keras
framework with a Tensorflow backend.
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Figure 1.  Overall framework for identifying anti-tumor HSPs.

C. Performance evaluation

To evaluate the prediction performance of the model,
three statistical methods are generally used in the literature,
such as K-fold cross-validation, independent test, and
jackknife validation. In this study, we applied 10-fold
cross-validation method for model optimization to find the
optimal parameters, then adopted independent test to
verify the reliability of model predictions. We employed
the following evaluation indicators, namely accuracy
(ACC), sensitivity (SN), specificity (SP) and Matthew’s
correlation  coefficient (MCC), to appraise the
generalization abilities of the prediction model. These
indicators are calculated as follows:

~ TP+ TN -
TP+TN + FP+ FN
N:L (6)
TP + FN
P:L 7
TN + FP
TPxTN—-FPxFN ®

CC=
J(TP+ FN)(TP+ FP(TN+FN)(TN+FP)

where TN is true negatives, TP is true positives, FN is
false negatives, and FP is false positives.



III. EXPERIMENTAL RESULTS AND ANALYSIS

A.  Hyperparameter selection

The proposed deep learning model for anti-tumor HSPs
prediction contains several hyperparameters, such as the
batch size, number of epochs and dropout value, and so on.
In order to obtain the model with the best prediction results,
we performed 10-fold cross-validation for hyperparameter
tuning.

TABLE 1. Several Parameters of convolutional neural network and
recommended values.

Parameter Value
Batch size 10
Epoch 150
Optimizer Adam
Activation function Relu
Dropout rate 0.1

TAB.I lists several central parameters of convolutional
neural network. Among the four optimizers in Keras,
Adam, Adadelta, Adagrad and Rmsprop were used. As
shown in FIG. 2, Adam has yielded superior performance.
FIG. 3 shown the model accuracy and error loss curves of
Adam optimizer. We selected Adam as an optimizer to
update the weight and optimize the convolutional neural
network.

1.0- Model accuracy

B.  Prediction performance of different feature extraction
algorithm

Feature extraction refers to converting the original data
into a new set of feature vectors through data
transformation or data mapping, so as to find effective
features for the prediction model. It directly affects the
result of model prediction. Protein sequence character
information is transformed into numerical vector
information by feature extraction method, and then
classified and predicted by classification method. In the
paper, four feature extraction methods (kmer, ACC, SC-
PseAAC and PSSM) were used to extract protein sequence
features. Among the four feature extraction methods, Kmer,
ACC and SC-PseAAC are generated from the web server
called ‘Pse-in-One 2.0°. PSSM is obtained by PSI-BLAST
tool. The maximum number of iterations is set to 3, and the
threshold value of E is set to 0.001.

TABLE 2. Comparison of prediction results obtained with different
feature extraction methods on the 10-fold cross-validation.

Feature ACC SN Sp MCC
extraction (%) (%) (%) (%)
ACC 90.40 | 89.00 92.73 85.51
Kmer 88.93 | 83.50 92.00 79.05
SC-PseAAC | 89.60 | 86.50 91.67 78.45
PSSM 93.83 | 92.00 94.33 87.40
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Figure 3  Model accuracy and error rate using Adam optimizer.
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As shown in TAB.2, for the 10-fold cross-validation
dataset, the performance of the PSSM feature extraction
algorithm is the best. The PSSM method achieved an ACC
0f 93.83%, a SN of 92.00%, a SP of 94.33%, and an MCC
of 87.40%. The better values in the TAB.2 are shown in
bold face. The ACC of PSSM is 93.83%, which is 3.43%,
4.90%, and 4.23% higher than that of ACC, Kmer and SC-
PseAAC, respectively. In addition to PSSM achieving
good performance, the second is feature extraction method
ACC. On the independent dataset, we could notice that
performance of PSSM algorithm is also the best, far
exceeding ACC, Kmer and SC-PseAAC methods.

C. Performance comparisons with other classification
tools

To evaluate the model performance, we compared the
CNN model with deep neural network (DNN), and gated
recurrent unit (GRU), on the same datasets. TAB.3
displays the performances of three models on the 10-fold
cross-validation, which concludes that the CNN model has
a better performance than DNN and GRU. In the 10-fold
cross-validation dataset, CNN achieved 92.80% value of
SN, 93.33% value of SP, 93.76% value of ACC and
86.39% value of MCC, respectively. Compared to the
other two models, CNN shared the highest SN, ACC and
MCC values on 10-fold cross-validation dataset. As shown
in TAB.3, GRU scored the highest SP value. However, its
corresponding SN value is lower than the CNN model,
since GRU predicts too many positive samples as negative.



As shown in FIG.4, the ACC, SN, and MCC values of
CNN were also higher than the corresponding values
measured for DNN and GRU on the independent dataset.
The ACC, SN, and MCC values of CNN were 86.27%,
91.11%, and 79.56%, respectively, higher than that of
DNN and GRU on the independent dataset. From the
above results, it is clear that proposed CNN model has the
excellent performance compared with other deep learning
models.

TABLE 3. Prediction results obtained with different classification
methods on the 10-fold cross-validation.

Classification ACC SN Sp MCC
method (%) (%) (%) (%)
CNN 93.76 92.80 93.33 86.39
DNN 76.40 78.00 88.67 74.06
GRU 80.60 82.50 98.67 79.53
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Figure 4. Prediction results obtained with different classification
methods on the independent test.

IV. CONCLUSION

In this study, we have presented an effective prediction
method for the discrimination of anti-tumor HSPs through
convolutional neural network and PSSM feature extraction
method, which enhanced prediction performance.
Compared with other DL methods, our model has obtained
significant improvements according to evaluation
indicators. The superior performance of the constructed
model for anti-tumor HSPs identification is due to several
reasons as follows: (1) optimize the most critical
hyperparameters. (2) extract protein sequence features
using PSSM algorithm to obtain the best optimized feature
set. (3) construct a deep neural network framework to
effectively learn vital protein features. Constructing
accurate classification model of anti-tumor HSPs is
extremely important for understanding molecular functions
of HSPs and designing drugs for tumor related diseases. At
the same time, this study is helpful to promote the further
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research and application of deep learning in biomedical
field.
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