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Abstract—Group sparse coding (GSC) is a powerful mech-
anism that has achieved great success in many low-level
vision tasks, showing great potential in image denoising.
Traditional group sparse coding generally uses overcomplete
dictionaries and l1-norm to regularize sparse coefficients.
But this is only an estimate of the solution, which cannot
obtain a sparse solution and has a high computational cost.
In this paper, we use a GSC framework with adaptive
dictionary learning for image denoising. In order to improve
the accuracy of obtaining sparse coefficients, the dictionary
used in this paper is learned from the input image, which
can be obtained by applying SVD once for each patch group.
Then use ADMM algorithm to solve the objective function.
Experimental results show that the PSNR value of our
approach not only is competitive with many advanced image
denoising methods but also achieves better visual effects.

Keywords-group-based sparse coding; adaptive dictionary
learning; weighted lp-norm minimization; ADMM; image
denoising.

I. INTRODUCTION

Image, as an information carrier, have powerful

information-containing capabilities, which leads to high-

er requirements for image quality. In real life, images

obtained by machines are often not perfect. Due to the

limitations of imaging methods and conditions and ex-

ternal interference, digital image signals will inevitably

be polluted by noise signals. Important information of

the research target in the image is often disturbed or

covered by noise signals. It increases the difficulty of

the subsequent research and processing of the image,

so denoising the image is an important task of image

processing. Image denoising is a process of recovering

a clean image X from an observed noisy image Y as

precisely as possible, while preserving important details

such as edge and feature information. The degradation

model can usually be expressed as Y = X + e, where

Y ∈ R
N is the observed noisy image, and X ∈ R

N

denotes the unknown original image, e ∈ R
N is an

additive white Gaussian noise with standard deviation

σe and zero mean. Mathematically, the image denoising

problem is ill-posed, and its solution is often not unique. In

order to successfully reconstruct a clean image X from an

observed noisy image Y , an image prior model is required.

Sparsity and non-local self-similarity are important

properties of natural images, which can be uesd as priors,

the most representative works are sparse representation-

based schemes. Traditional patch-based sparse coding

(PSC) has been used widely in many image restoration

tasks and achieved good results. This scheme encodes

image patches as sparse linear combinations of atoms in an

overcomplete redundant dictionary, which is usually fixed

or learned from natural images.

However, patch-based sparse coding models usually

assume the independence of image patches without con-

sidering the correlation between similar patches. The latest

progress in Group-based Sparse Coding (GSC) is to use

groups of similar image patches as the basic unit for

subsequent processing, and show great potential in various

image processing tasks.

Inspired by the work of Zha et al. [1] and Wang et al.

[2] in sparse coding, in this paper we use a group-based

sparse coding with adaptive dictionary learning for image

denoising. To make this denoising approach tractable, the

alternating direction multiplier method (ADMM) [3] is

adopted to solve the large-scale lp-norm minimization

problem. Furthermore, we use an adaptive dictionary

learning method that adaptively learns the corresponding

dictionary according to the different input images. The

experiment show that the PSNR results of our method is

not only better than the classical denoising methods, such

as BM3D and EPLL but also better than many state-of-

the-art denoising methods.

II. GROUP-BASED SPARSE CODING

Group sparse coding (GSC) is a powerful mechanis-

m for fusing the inherent local sparsity and non-local

self-similarity (NSS) of natural images [1], [2]. Based

on PSC, GSC considers the correlation between image

patches. Specifically, first to divide the observed noisy

image Y ∈ R
N into n overlapping patches of size√

s × √
s , and vectorize each image patch, denoted as

yi ∈ Rs, i = 1, 2, . . . , n. Then, a window with a fixed

size of C×C is used to traverse the entire image to search

and select similar matching patches to form a set of similar

image patches of yi. The search for similar patches usually
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uses KNN [4]. Next, stack all the patches in the set to form

a matrix Yi ∈ R
s×m.

For each image patch group Yi, given a dictionary Di,

usually a overcomplete dictionary fixed in advance or

learned through PCA, the group sparse coefficient Ai can

be obtained by,

Âi = argmin
Ai

(
1

2σe
2
‖Yi −DiAi‖22 + λ‖Ai‖0

)
(1)

where ‖‖2 and ‖‖0 are the Euclidean norm and the l0-norm

respectively, and λ denotes the regularization parameter.

Once the coefficient {Ai}ni=1 are obtained, the original

image X can be reconstructed with X̂ = DA. However,

since the l0-norm minimization is a discontinuous opti-

mization problem, solving the above equation is NP-hard.

In order to make it tractable, it is often replaced by other

norm minimization.

III. GROUP-BASED SPARSE CODING WITH ADAPTIVE

DICTIONARY LEARNING

A. Modeling of Weighted lp-norm Minimization

In the work of Zha et al. [1], it is proved by theoretical

analysis and experiments that using weighted lp-norm

minimization to replace l0-norm minimization has the best

effect on image restoration, so here in this work, we use

lp-norm to replace l0-norm. Therefore, Eq. (1) is replaced

by the following minimization problem,

Âi = argmin
Ai

(
1

2σe
2
‖Yi −DiAi‖22 + λ‖WiAi‖p

)
(2)

where Wi denotes the weight of each patch group Yi,

which is used to strengthen the representation ability of

Ai for each image patch group Yi.

B. Adaptive Dictionary Learning

Dictionary learning is a large scale problem, requires

a large amount of computation. Traditional dictionary

learning is to learn an over-complete dictionary to achieve

the purpose of sparse representation. In order to improve

the accuracy of obtaining sparse coefficients, we use an

adaptive dictionary learning approach. The dictionary is

learned from the patch group Yi of the input image, so

that the structure is not too complicated and easy to learn.

Different from the work of Wang et al. [2], we construct

the dictionary by simple singular value decomposition

(SVD), which saves the computational cost and time.

Specifically, apply singular value decomposition to Yi,

Yi = UiΔiV
T
i =

t∑
j=1

δi,jui,jv
T
i,j (3)

where Δi = diag (δi,1, δi,2, . . . , δi,t) is a diagonal matrix,

t represents the minimum value of s and m, and ui,j , vi,j
denotes the j-th column of Ui and Vi, respectively.

Then, the dictionary atom di,j is defined as,

di,j = vTi,jui,j , j = 1, 2, . . . , t (4)

In this way, we learn an adaptive dictionary Di =
[di,1, di,2, . . . , di,t] for each patch group Yi. Note that in

this way, the entire dictionary learning process requires

only a simple SVD for each image patch group.

C. Solving the Weighted lp-norm Minimization by ADMM

The alternating direction multiplier method (ADMM)

[3] was proved only needs a small memory to reach the

convergence condition, so it is popular for most large-scale

problems. Note that Eq. (2) is a large-scale optimization

problem and is non-convex, which is difficult to solve.

In this paper, we apply ADMM to Eq. (2) to make it

tractable. First, an auxiliary variable Z is introduced to

transform Eq. (2) into another equivalence constraint,

Âi = arg min
Zi,Ai

(
1

2σe
2
‖Yi − Zi‖22 + λ‖WiAi‖p

)
,

s.t. Zi = DiAi

(5)

The subscript i is omitted in the derivation below for

conciseness. Next, convert the above equation into the

following three iterations:

Zk+1 = argmin
Z

(
1

2σe
2
‖Y − Z‖22 +

ρ

2

∥∥Z −DAk +Bk
∥∥2
2

)

(6)

Ak+1 = argmin
A

(
λ‖WA‖p +

ρ

2

∥∥Zk −DA+Bk
∥∥2
2

)
(7)

Bk+1 = Bk +
(
Zk+1 −DAk+1

)
(8)

where ρ is the penalty parameter of ADMM. It can be

observed that Eq. (8) is just a simple update, so solving

Eq. (5) is divided into two minimization sub-problems.

Fortunately, each subproblem has a valid solution. The

superscript k is omitted for convenience.

Note that Eq. (6) is a least squares (LS) problem and

has a closed-form solution as follows,

Ẑ =
(
IN + ρσ2

eIN
)−1 × (

Y + ρσ2
e (DA−B)

)
(9)

where I is an N-dimensional identity matrix consistent

with the size of the observed image.

To get the solution to Eq. (7), we apply the generalized

soft-thresholding (GST) algorithm [5]. The closed-form

solution can be obtain by,

Ai = GST (yi, τwi, p) (10)

where τ = λsnm
ρσeN

, yi and wi are the vectorization of the

similarity patch group matrix Yi and its corresponding

weight matrix Wi respectively.

Since large numbers in the sparse coefficient Ai usually

contain important information in the image Y , such as

edges and textures. To preserve these information in each

iteration, we usually scale down the values of elements in

Ai moderately proportional to each iteration. Inspired by

[1], wi and λ are set to wi =
1

|yi|+ε , λ =
2
√
2σ2

e

ϕi+θ in each
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iteration, where ϕi is the estimated variance of the vector

yi, ε and θ are small positive constants.

The group-based sparse coding framwork with adaptive

dictionary learning for image denoising we used is sum-

marized in Algorithm 1.

Algorithm 1: The GSC framework with Adaptive

Dictionary Learning

Input: The observation Y .

Initialization: X0, σe, N , n, s, m, C, ε, θ,

MaxIter, p, ρ
for k = 0 to MaxIter do

while stopping criterion not met do
Update λk+1 by computing λ =

2
√
2σ2

e

ϕi+θ ;

Iterative regularization

Y k+1 = Xk + λk+1
(
Y k −Xk

)
;

for Each patch group Yi do
Construct dictionary Di by Eq. (4);

Update τ by computing τ = λsnm
ρσeN

;

Update wi by computing w = 1
|y|+ε ;

Update Ai by computing Eq. (10);

Update Bi by computing Eq. (8);

Reconstruct X̂i by X̂i = DiAi;
end
Collect X̂i to form the denoised image X̂ .

end
end
Output: The reconstructed clean image X̂ .

IV. EXPERIMENTS

To validate the effectiveness of the algorithm mentioned

above, in this section we conduct some experiments to

compare it with some traditional, benchmark, and state-

of-the-art methods for image denoising, including BM3D

[6], EPLL [7], LRJS [8], WNNM [9] and WSNM [10].

The images used in the experiment are shown in Fig. 1.

(a) (b) (c) (d) (e)

Figure 1. The five image for denoising experiments

The parameters of the our approach are set as follows:

for each image patch, the patch size
√
s × √

s is set to

8 × 8, and the number of similar patches to be searched

m is set to 40, the window to search similar patches C×C
is set to 25×25, the small positive constant (ε, θ) are set to

(0.1, 0.3). For parameters (p, ρ), there are different settings

for different noise levels. Specifically, (p, ρ) are set to (1,

0.03), (0.95, 0.003), (0.9, 0.001) and (0.85, 0.0005) for

σe ≤ 20, 20 < σe ≤ 50, 50 < σe ≤ 70 and 70 <
σe ≤ 100 respectively. The experiments were conducted

on Matlab R2016a with a machine have Intel Core i7-6700

CPU @ 3.40GHz and 16GB memory.

Due to limited space, the PSNR and visualization results

of only five images under four different noise levels are

presented in this section, i.e., σe=20, 30, 50, and 90. Table

I presents all the PSNR results of our experiment, the best

results are highlighted in bold, and the visualization results

are given in Fig. 2.
As can be seen from Table I, our denoising method

is competitive, and the PSNR value is better than other

competing methods in most cases, compared to BM3D,

EPLL, LRJS, WNNM and WSNM, the average PSNR

is improved by 0.504dB, 0.633dB, 0.332dB, 0.103dB,

0.068dB, respectively. For some images, the approach used

in this paper cannot obtain the highest value of PSNR.

However, as can be seen from Fig. 2, although WSNM

obtains a higher PSNR value, the visual effect is not as

good as ours. It can be seen that other denoising methods

used for comparison still produce some undesirable arti-

facts when denoising the image. In contrast, the denoising

scheme we use not only preserves intact edge details but

also eliminates unwanted visual artifacts.

V. CONCLUSION

Different from traditional group sparse coding, this

paper use an image denoising framework based on group

sparse coding using adaptive dictionary learning, which

uses a simple SVD to learn the dictionary from the

input image, reduces the amount of computation while

improving the accuracy of obtaining sparse coefficients.

The weighted lp-norm is used to replace the l0-norm. In

order to make the scheme tractable, the ADMM algorithm

is used to solve the weighted lp-norm minimization prob-

lem. Experimental results show that the image denoising

framework we used in this paper outperforms many other

state-of-the-art denoising methods.
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