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Abstract—Random opportunistic networks are dynamic,
resulting in nodes not being able to sense the state of the
network, and the network topology of nodes changes all the
time. Therefore, this paper proposes a RIS-aided channel
construction algorithm, which can be used to maintain and
change the topology of random opportunistic networks. A
machine learning algorithm with spatio-temporal feature
fusion is first used to predict the current position of the node,
and finally the RIS-aided channel construction is
implemented based on the predicted position. The simulation
experiments show that the algorithm can find the optimal
path between the target node and the source node in the
presence of errors in the target node.
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L.

Random opportunistic network are opportunistic
networks that relies on the movement of nodes to forward
messages, thus enabling communication between source
and destination nodes[1].Random opportunistic networks
are flexible in networking, not constrained by
infrastructure, and more suitable for communication needs
in network resource-constrained scenarios. However, there
are still some problems with random opportunistic
networks. The network topology of stochastic
opportunistic networks varies over time, the network has
intermittent connectivity, and communication latency is
high.Reconfigurable Intelligent Surfaces[2] (RIS) is a
communication technology with passive and low-cost
characteristics. The implementation of RIS-aided channel
construction in random opportunistic networks can
maintain the topology of the network, solidify the network
structure, or change the structure of the network. Second, it
can strengthen the communication links and extend the
duration of network communication. Furthermore, it can
assist in the deployment of distributed systems such as
federated learning.

Abdullah et al.[3,4] investigated a collaborative system
composed of RIS and decode-and-forward relay in both
half-duplex and full-duplex modes of operation,
respectively, and showed that the collaborative system
composed of RIS and relay can significantly improve the
communication performance, whether operating in half-
duplex or full-duplex mode. To improve the bottleneck of
existing O2I (Outdoor-to-Indoor) millimeter wave
communication, Nemati et al.[5] used RIS to design a smart
wall for intelligent signal conversion from outdoors to
indoors. Buzzi et al.[6] studied a multi-user wireless
network aided by RIS and gave a resource allocation
algorithm for several cases. Zeng et al.[7] developed a RIS
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layout optimization problem by optimizing RIS direction
and horizontal distance to maximize cell coverage .Liu et
al.[8] introduced RIS into unmanned aircraft (UAV)
systems to jointly optimize UAV trajectories, RIS passive
beamforming, and maximize the average downlink
throughput.

The rest of the structure of this paper is as follows. The
second part proposes a node motion position prediction
algorithm based on spatiotemporal feature fusion, and the
third part proposes a RIS-aided channel construction
algorithm. The fourth part is the simulation experiment,
and the fifth part summarizes and proposes future work.

II.

In random opportunistic networks, nodes can only
obtain their own location information, while information
about other nodes cannot be obtained in real time. To
address this problem, we can sample the location
information of node movement and compose discrete time
series, then we can use the time series scheme to model it
and then achieve prediction. This can not only improve the
resource utilization of the network to a certain extent, but
also reduce the network control consumption.

TARGET COORDINATE ESTIMATION

A. Problem Description

If we use the adjacency matrix to represent the topology
of a random opportunistic networks, then this adjacency
matrix can be represented as a dynamic graph. Usually, a
dynamic graph can be divided into the set of static graphs
with different moments. Mathematically, the dynamic
graph is represented as:

r =(G*,G?-,G") Y]

Gt = ((V, X5, A9) (2)

Where G denotes the graph at time ¢, the V* is the set

of N nodes on the network, and A* € RM*¥ is an adjacency
matrix, representing the connectivity of the nodes. X*
denotes the feature matrix of each node. Then the prediction
problem is formed as learning a function f(-) that maps the

P historical graph signals to graph signals at the future
moment.

Xevr = f5 Kepy o Xem1, Xe))
B. Experimental data

3)

In this paper, the simulated random waypoint
movement model (RWP) is used to generate the dataset of
node movement. The RWP model is set to 50 nodes with a
communication radius of 2 m. In a circular area with an
active radius of 10 m, the movement speed is [1,6] (m/s),
the abscissa and ordinate of the motion coordinates of a



node at 1000 moments with a dwell time of [1,6] (s) are

shown in Figure 1.
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Figure 1. RWP model data

C. Spatial-Temporal Features Extraction Module

Given the adjacency matrix A and the identity matrix
X, the GCN[9] model constructs a Fourier domain
convolution kernel. This convolution kernel can act on the
nodes of the graph and it uses convolution to extract
features of the graph structure type data and propagates
them in the form of equation (4).

H = 6 (D2AD7HO9O) 4)

Where A = (A + 1) I is the unit matrix and D is the 4
the degree matrix of D = };4;;, and H represents the
input features of each layer, and o represents the nonlinear
activation function, and 8 represents the I the parameter
values of the layers.

In this study, a two-layer GCN model is chosen to
obtain the spatial correlation, which can be expressed as

f(X,A) = o(ARelu(AXWy)W;) (5)

1 1

where D2AD "2 denotes the preprocessing step,
andW, € R*S denotes the weight matrix from the input
to the hidden layer, and P denotes the length of the feature
matrix, the S denotes the number of hidden cells, and W, €
RS*T denotes the weight matrix from the hidden layer to
the output layer. f(X,A) € RV*T denotes the prediction
length of T of the output, and ReLU(*) represents the
corrected linear unit, which is the commonly used
activation layer in current deep neural networks.

D. Temporal Feature Extraction Module

Temporal relationship is a key feature to be considered
in node movement coordinate prediction. RNN can be used
to extract them from sequential data, but it cannot be used
directly due to the vanishing gradient problem. In this case,
this paper uses the LSTM network, the LSTM network [11]
follows the RNN network structure, but the structure of
each unit is different from that of the RNN. Since there is
only one Tanh in each unit of the RNN, the unit structure
of the LSTM is modified to three weight gates, namely
input gate, output gate and forget gate. The input controls
the receipt of the input of the unit, the output gate controls
the receipt of the output of the unit, and the forget gate
controls the forgetting of the internal state of the unit.
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E. Model structure
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Figure 2. GCN-LSTM Structures

This part uses the method of processing dynamic graph
convolutional neural network (GCN) and long short-term
memory network (LSTM) to predict the coordinates of its
nodes based on historical data. Specifically, GCN is used
to learn the topology of the network to obtain spatial
correlation, while LSTM is used to learn the dynamic
changes of data to obtain temporal correlation. The GCN-
LSTM model used in this paper is shown in Figure 2. The
2-dimensional coordinate information of 50 nodes and 10
time steps is used as the slice data {X} and the adjacency
matrix {A} corresponding to each moment, and sent to the
GCN layer for extraction Spatial features, the number of
neurons in GCN is 16. The shape of the GCN output data
is changed through the reshape layer, and then input to the
two-layer LSTM to extract time-related trend features. The
number of neurons in each layer of LSTM is 32. Then it
goes through the dropout layer. The last is a fully connected
layer, and uses the Timedistributed layer to transform the
output single-step prediction results.

I1I.

In the previous section, we can obtain the predicted
location of the current target node. Usually, RIS devices
can be conveniently arranged on the surface of buildings
due to their easy deployment. We can achieve the channel
construction between the target node and the source node
by selecting an optimal reflection path among the RIS
devices arranged in advance. The specific RIS channel
construction schematic is shown in Figure 3 below.

RIS-AIDED CHANNEL CONSTRUCTION

Figure 3. RIS-Aided channel construction structure

A. RIS Power Model

We consider a general RIS-aided single-input, single-
output wireless communication system, where we place the
RIS device in the X — Y in the plane, and we first establish
the power radiation pattern[11] visualizing the location



where the antenna transmits or receives the maximum
power. The normalized power radiation functionF(0) ,
where 0 is the elevation angle from the antenna to the
particular transmit/receive direction. When 6 =0, it
represents that the corresponding antenna has the
maximum gain.

cos30 0 € [Og]
ol

We denote the reflection coefficient of the RIS by X,
which usually depends on the properties of the RIS, the
polarization of the radio waves, and the angle of incidence.
Then, the received (noise-free) baseband signal can be
represented as equation (7):

() =2 (u) x(t)

Assume that x(t) the transmitting power of P, and 1 is
the wavelength, and r is the distance between the
transmitter and the receiver, and d, , and d,, is the RIS cell
size in horizontal and vertical coordinates. We consider at
this point the received power of a single RIS cell as follows.

2 2
Pim = F(O)P. (=) d.d, ®)

Assume that the peak radiation direction of both the
transmitting and receiving antennas point to the center of
the RIS, and M, N are the number of reflecting units in the
horizontal and vertical coordinates of the IRS device,
respectively. Then the received power of each RIS is
related to the transmitted power of the previous device.

F(9) = (6)

0

(7

2
Pour = F(gpre) (41?) PyreMNd, d,

B. RIS-Aided Channel Construction Algorithm

After we obtain the need to connect the starting node to
the destination node, we can construct a communication
channel between the starting node and the destination node
by means of reflection from the RIS devices arranged in the
active range. It should be noted that due to some errors in
the predicted node locations, the reflection of the last RIS
reflecting surface before reaching the node needs to be
changed so that it uses a broadcast to the target node
searched. We choose the power loss of the system as the
cost, and the specific steps of its RIS channel construction
algorithm are shown below.

1) First, we initialize the source node and the nodes of
the RIS device as the set {R} that predicts the target nodes.
The distance matrix between the nodesm , the pow array
records the power of each node initialized to 0, as well as
records the previous node of the current optimal path node
pre array.

2) The set {R} and iterate through the set of {R} the
vertex that consumes the least powerr and from the set {R}
remove the node r .

3) Use the node u as the intermediate point of signal
transmission, modify pow the power of each node in the
array. The power is updated using the cost update formula
of (10).

€))

pow[r] = max(F(6, (p)(ﬁ)zpow[u]MN,pow[r]) (10)
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4) Repeat steps 2) and 3) until all vertices have been
traversed.

5) Add the predicted target node S into it, and traverse
the set {R} each node in the node as an intermediate node
through equation (9) to update the node S After finding the
node with the optimal path, determine whether the real
node can be reached S If it can be reached, the final path is
output. Conversely, the intermediate node is excluded and
the suboptimal node is found. The improved RIS channel
construction algorithm pseudo code is shown in Table 1
below.

TABLE I. RIS-AIDED CHANNEL CONSTRUCTION ALGORITHM

Input: Node Set U, Distance matrix m, Power matrix, Target Node s,
Output: Path arrays

R,R<U-s
while R is not empty:
r< element in R with max pow|[u]
Remove r from R
for each neighbor u of r still in R :
pow[r] = max(F (0, p)(1/4mr)?pow[u]MN, pow|[r])
End for
End while
for each neighbor x of s in R :
te[x] = pow[s]F (6, p)(A/4nr)?MN
End for
Sort(te)
for each x in te:
if (true)
Insert x into the pre
Break;
End if
End for
Traverse pre output path

C. Algorithm Analysis

The RIS-aided channel construction algorithm in this
section uses Dijkstra's algorithm[12], whose model can be
abstracted as a graph structure consisting of n vertices and
m edges, so its time complexity is O (n? + m) On the basis
of this, the target node is taken out, and the vertex set is
traversed once before the update judgment, Therefore, the
time complexity of the RIS channel construction algorithm
is 0(n? +n +m).

Iv.

Table II provides the simulation parameters below.
TABLE II. SIMULATION SCENARIO SETTINGS

SIMULATION RESULTS

Simulation Par ters Values
operating frequency f 4.25GHZ
Wavelength A 0.07m
Size of element d,, = d,, 0.0lm
number of element N = M 10
Number of RIS 10
Angle of RIS [0%,360°]
RIS Communication radius 10m
Transmit power P 20dBm

A. Experiment of GCN-LSTM

In this paper, the common evaluation metrics used in
the experimental evaluation phase with regression models
are: root mean square error (RMSE), mean absolute error
(MAE), and accuracy, and in the training process, we set
the learning rate to 0.001, use Adam optimizer to optimize
automatically, set the batch size to 32, set the number of
iterations to 600, dropout ratio is set to 0.3 and the



prediction sliding window is 10, and we do single-step
prediction. The experimental results are as follows.
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Fig. 4. Node coordinate predicted value and true value

The experimental results are given in Figure 4, where
the yellow line is its true value and the blue line is the
predicted value. The algorithms HA (Historical average),
ARIMA (Autoregressive Integrated Moving Average
Model), LSTM, and LSTM-GCN proposed in this paper
were also selected. As shown in Table 3, the prediction
results of GCN-LSTM proposed in this paper are more
accurate, which can prove the effectiveness and feasibility
of the algorithm.

TABLE III. NUMERICAL RESULTS

Models RMSE MAE Accuracy
HA 1.5078 1.2294 38.7%
ARIMA 1.0506 0.8468 58.3%
LSTM 0.6823 0.4521 71.9%
GCN-LSTM 0.5761 0.3345 79.6%

As can be seen from the above table, GCN-LSTM
based on rate-temporal features is more effective than
methods that only consider rate-temporal features.

B. Experiment of RIS-Aided Channel Construction
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Fig.5. RIS-Aided channel construction result

According to the prediction of network nodes by GCN-
LSTM algorithm, we can get the approximate location of
the target node, set up ten random RIS devices with random
angles in an active range. The experimental results are
shown in Figure 5 above, where the node first finds the
previous RIS reflection surface where its predicted node is
located by the RIS channel construction algorithm after the
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coordinates of the predicted node are known. The RIS
reflection method is modified so that it can search for the
real target node within a sector. Eventually, the purpose of
connecting the source node to the real target node is
achieved.

V.

In this paper, we propose a node prediction method
considering spatio-temporal characteristics for the problem
of unavailability of random opportunistic networks nodes,
and propose a RIS-aided channel construction algorithm,
which is used to find the optimal path between the target
node and the source node, even if there is some error in the
location of the target node. This algorithm can be used to
maintain and update the topology of random opportunistic
networks, which is significant for congestion control, route
optimization memory load balancing of random
opportunistic networks.

CONCLUSIONS
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