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Abstract A distributed filter design method for 
WSN with sensor nonlinearity saturation and 
random switching of network topology are 
proposed in this paper . A mass of sensor nodes are 
deployed in the sensor network, the target device 
is sensed and measured, and transmitted to the 
distributed filter through the network. In the 
filtering network, the local estimator receives the 
measurement information from the sensor 
node .The estimation from the neighboring nodes 
via a random time-varying topology to complete 
the state estimation and trajectory tracking for 
the objective system. The Bernoulli binary 
distribution is used to describe the random 
saturation nonlinearity of the sensor network, and 
the inhomogeneous Markov chain is adopted to 
represent the random switching topologies. The 
sufficient conditions are given as distributed 
filters in the form of linear matrix inequalities 
method. In the end, the effectiveness of this design 
method is illustrated by a simulation example.
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Ⅰ Introduction

A mass of sensor nodes distributed in the detection area
constitute a wireless sensor network.  It is widely available for
environmental monitoring and protection, intelligent equipment, 
military monitoring and other fields. It has attracted the attention 
of more and more relevant researchers[1]-[5]. In these many 
applications, design a distributed estimation algorithm for 
monitoring target or system has become a basic WSN-based 
problem. It can be used to estimate and track intended signals, 
states or tracks . In previous years, many research achievements 
have been made on distributed filtering algorithms based on 
WSN[6]-[9].

At present, most of the existing filter results need to make 
strict assumptions about the linearity of the sensors. WSN are 
generally deployed in complex environments, including many 
uncontrollable factors, such as mountains, highlands and 
complex oceans, which may lead to random measurement 
saturation nonlinearity[6]-[8]. Reference [9] solves the problem of
output regulation problem of linear heterogeneous multi-agent 
systems under switched topology. Reference [10] designed a 
powerful distributed robust filter based on an adaptive event 

trigger mechanism. Therefore, the design of distributed robust 
filtering method with random measurement saturation in 
wireless sensor networks has practical engineering significance.

It is significance to study a distributed filter state 
estimation design method with random switching topology 
under sensor saturation constraints. This paper’s main 
contributions are as follows: Based on sector bounded theory, 
Bernoulli random variables are used to describe the randomly 
occurring measurement saturation nonlinearity in WSN, and the 
designed distributed filter has strong robustness; Based on the 
non-homogeneous Markov theory, the random change of 
communication topology is modeled, and the sufficient 
conditions for the existence of distributed filters with random 
switching of network topology are obtained, while ensuring the 
expected performance of the filtering error dynamic system .∞ࡴ

Ⅱ Represent of this problem

The data information exchange between sensor nodes are
usually represented by a directed graphGr(k)=൫V,E,∂r(k)൯, where
is the node set }1, 2{ , , NV } , is the boundary, 

and ( ) ( )r k r k
ij N N

a is the adjacency matrix .If the digraph 

Gr(k) has a boundary from sensor node j to sensor node i , and

the ordered pair(݅, ݆) ∈ ℰ,  aij
r(k)>0, that node is named node i an

adjacent node of node j. The definition matrix ( )( )

N

r k
i

r
j

k

N
lL=

is the Laplacian matrix, where 
Moreover,  assume that for all i V ( ) 0r k

iia ,The set formed by

all adjacent nodes of node i is named the set of adjacent nodes 
of node i, denoted by

Markov chain r(k) is used to describe the current network 

topology type. It takes values in a finite set S={1,2, ,n0}, and

its time-varying state transition probability matrix 

is Π(k)=(πst(k))n0×n0πst(k), It represents the probability that sub

topology S jumps to sub topology T, which satisfies

1

And ߎ(݇) s a time-varying matrix representing an 

inhomogeneous Markov chain.It’s assumed to have multicellular 

uncertainty, which satisfies ߎ(݇)ߎ(݇) = ∑ ௠(݇)௠బ௠ୀଵߙ ,(௠)ߎ (2)
Among them (݇)௠ߙ > 0, ∑ ௠(݇)௠బ௠ୀଵߙ = 1. (3)
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Here πst≥0, and for all s,t S ,∑ πst=1n0
t=1  

Consider the following discrete-time linear time-invariant 
system  

 ݅(݇) ∈ ℝ௡ೣ is the state vector of the system, ݆(݇) ∈ ℝ௡೥ is the 
output vector to be estimated, ݕ(݇) ∈ ℝ௡ೢ is the external 
interference, and belongs to ݈ଶ[0,∞). 

The measurement type of each sensor node in WSN is 
described as 

(݇)௜ݕ            ∈ ℝ௡೤ is the measurement vector of node i, ݒ௜(݇) is 
the measurement noise, and belongs to ݈ଶ0,∞) .  is the  (ݔ)݂
saturation function, which satisfies 

 
One of them ܭ௜  ≜ ଶ,௜ܭ −  ଵ,௜ .In addition, the coefficientܭ

matrices ܣ, ,ܤ ,ܯ ,௜ܥ  .௜ all have corresponding dimensionsܦ
It is assumed {ߠ௜(݇)}  that Bernoulli distributed random 

white sequence with values in {0,1}, which is used to describe 
the randomly occurring saturated nonlinearity and satisfies  
                     ॱ{ߠ௜(݇)} = Prob{ߠ௜(݇) = 1} = (݇)௜ߠ}௜, ॱߚ = 0} = 1 − (݇)௜ߠ)}௜,                                    ॱߚ − {௜)ଶߚ = ௜(1ߚ − (௜ߚ =  ௜, (9)ߙ

And assume that for any  1 ≤ ݅ ≤ ܰ0 ≤ ݇ < ∞ , the 
random ߠ௜(݇) variables are independent of each other. 
 Construct the following filter subject to random sensor 
saturation constraints and communication topology switching 

 
Where ݔො௜ ∈ ℝ௡ೣ   is the filter state and ̂ݖ௜(݇) ∈ ℝ௡೥  is the 
estimated value of the filter i to ݖ(݇). The matrix ܮ௜௦, ௜ܹ௦ is the 
filter parameters that need to be determined. 

Define the state estimation error as ݁௜(݇) = (݇)ݔ −  ,(݇)ො௜ݔ
then each node state error is described as ݁௜(݇ + 1) = ܣ) + (݇)௜)݁௜ܥ௜௦ܮ + −                (݇)ݓܤ ܫ) − +                ((݇)௜ݕ)௜௦߶௦௔௧,௜ܮ(௜ߚ (݇)௜ߠ)௜௦ܮ − −                ((݇)௜ݕ)௜)߶௦௔௧,௜ߚ ௜ܥଵ,௜ܭ௜௦൫ܮ − ௜ܥଵ,௜ܭ௜ߚ + ௜ܥ௜ߚ − −                (݇)ݔ௜൯ܥ (݇)௜ߠ)௜௦ܮ − ௜ܥ௜)൫ߚ − −                (݇)ݔ௜൯ܥଵ,௜ܭ (݇)௜ݒ௜ܦ௜௦ܮ − ௜ܹ௦ ∑ ܽ௜௝௦ ൫݁௜(݇) − ௝݁(݇)൯௝∈ ೔ࣨೞ . (11)  

If the output estimation error is defined as ̃ݖ௜(݇) = (݇)ݖ  ௜(݇), the output estimation error is described asݖ̂−
(݇)௜ݖ̃  =  ௜(݇).  (12)݁ܯ

In order to express conveniently, considering N nodes at 
the same time.  

The estimation error vector is 
The system state vector is 
The filter state vector is 
The output the estimation error vector is 

  
The sensor network measurement vector is   
The measurement noise vector is 

 
The parameter vector of the system is  

 

 
          (13) 
The following filtering error system can be obtained 

⎩⎪⎨
⎪⎧݁(݇ + 1) = ሜܣ) − ሜܥሜ௦ܮ − ሜܹ ௦ℒ௦)݁(݇) + ሜܤ (݇)ݓ − ሜܦሜ௦ܮ −(݇)ݒ ൫ܫ − ሜ௦߶ሜܮሜ൯ߚ ௦௔௧(݇) + ൫ߠሜ(݇) − ሜ௦߶ሜܮሜ൯ߚ ௦௔௧(݇)− ሜܥሜଵܭሜ௦൫ܮ − ሜܥሜଵܭሜߚ + ሜܥሜߚ − −(݇)ݔሜ൯̄ܥ ൫ߠሜ(݇) − ሜܥ)ሜ௦ܮሜ൯ߚ − (݇)ݖ̃(݇)ݔ̄(ሜܥሜଵܭ = ሜܯ ,(݇)ߟ

(14) 

Among them 
 ሜܹ ௦ = ݀݅ܽ݃{ ଵܹ௦, ଶܹ௦, ⋯ ேܹ௦},                                ܮሜ௦ = ଵ௦ܮ}݃ܽ݅݀ , ଶ௦ܮ , ⋯ ே௦ܮ }.  (15) 

Definition ߟ(݇) = (݇)்ݔ̄] ்݁(݇)]்  and ߶෨௦௔௧(݇) =[0 ߶ሜ ௦௔௧் (݇)]் , according to Equations (4), (5) and (14), the 

following augmented filtering error system can be obtained 

 ⎩⎪⎨
݇)ߟ⎧⎪ + 1) = ࣛଵ௦ߟ(݇) + ൫ߠሜ(݇) − +                (݇)ߟሜ൯ࣛଶ௦ߚ ࣝଵ௦߶෨௦௔௧(݇) + ൫ߠሜ(݇) − +                (݇)ሜ൯ࣝଶ௦߶෨௦௔௧ߚ ℬ௦̄ݖ̃,(݇)ݓ(݇) = ℳߟ(݇),  (16) 

Among them 
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  (17) 
here 
 Φ21

s =-Lሜ s൫Kሜ 1Cሜ -βሜ Kሜ 1Cሜ +βሜCሜ -Cሜ ൯, 

Φ22
s =Aሜ -Lሜ sCሜ -Wሜ sLs, 

Γ21
s =-Lሜ s(Cሜ -Kሜ 1Cሜ ). (18) 

Ⅲ Distributed filtering analysis ࡴ∞ 

Theorem 1. Given a desired level of perturbation decay ߛ)ߛ > 0) , if positive definite matrices ܲ௦ > 0  exist, 
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satisfy (0)ߟ௦ܲ(0)்ߟ ≤ ,(0)ߟ௦ܴ(0)்ߟଶߛ ݏ = 1,2, ⋯ ݊଴ , and 
inequalities 

⎣⎢⎢
⎢⎢⎢
⎡ -Ps * * * * *

0 -γ2I * * * *
C෩K 0 -2I * * *

Pሜ sA1
s Pሜ sBs Pሜ sC1

s -Pሜ s * *√ᾱPሜ sA2
s 0 √ᾱPሜ sC2

s 0 -Pሜ s *
M 0 0 0 0 -I⎦⎥⎥

⎥⎥⎥
⎤

<0, (22) 

Where ሜܲ ௦ = ∑ ௦௧௡బ௧ୀଵߨ̄ ܲ௧, ௦௧ߨ̄ = ሚ௄ܥ , {௦௧௠ߨ}ଵஸ௠ஸ௠బݔܽ݉ =൤ 0 ሜଶܭ)0 − ሜܥ(ሜଵܭ 0൨, the augmented filter error system (16) has a 

given ܪ∞ performance. 
Proof, definition ܭሜ = ሜଶܭ −  ሜଵ ,and performance analysisܭ

function 

  
According to the saturation constraint condition (5), it can 

be obtained 
 −2߶ሜ ௦௔௧் (݇)߶ሜ ௦௔௧(݇) + 2߶ሜ ௦௔௧் ሜܭ(݇) (݇)ݕ > 0. (24) 

Then get 

 
Introduce the constant zero equality 

 
Define the combination (23) and (25), then have 

 
Among them 

11

21 22

31 3

1

2 33

11
2

21 2

1 2 2

1

1 1 2 2

1 13 1 2

2

31

32 3 2

,
, ,

,

, 2 .

* *
* ,

sT s s sT s s s T

sT s s sT s s

s s

s

T s sT s s
K

sT s s sT s s sT s s

ss s

s s s

s

s s

s

s s

P P P
P P I

P P C

P P P I

A A A A M M
B A B B

C A C A

C B C C C C

,KCK

 (28) 

Then, add both sides of inequality (27) from 0 to N-1, and 
we can get 

 
Then the performance constraints ࡴ∞  defined in (19) can 

be further described as 

 

 According to Schur's complement lemma, inequality (22) 

contains ߉௦ < 0, while ሜܲ ௦ > 0, and the initial conditions ܲ௦ ܬ ଶܴ௦, then we haveߛ≥ < 0, and the proof ends. 

4 Simulation examples 
 Through a numerical simulation example, we verify the 
effectiveness of the proposed method. 

Suppose a sensor network consisting of 4 nodes, and its 
communication topology is shown in Figure 1. 

( ) 1r k 1 ( ) 2r k 2 ( ) 3r k 3

 
Figure 1 Topology of sensor network 

Assuming that the topology switch has nonhomogeneous 
Markov randomness, its transition probability matrix is 

composed of the following three matrices ( )k  

(ଵ)ߎ = ൥0.5 0.3 0.20.3 0.4 0.30.2 0.3 0.5൩ , (ଶ)ߎ = ൥0.3 0.3 0.40.5 0.3 0.20.3 0.3 0.4൩ , 
(ଷ)ߎ = ൥0.5 0.2 0.30.3 0.3 0.40.3 0.4 0.3൩. 

The system parameters are chosen as ܣ = ቂ0.3 0.1−1 0.2ቃ , ܤ = ቂ0.30.1ቃ , ܯ = [2 2]. 
Sensor network measurement parameters are 

 
The saturated nonlinearity is described as 

 
Among them 

  
In addition, the probability of randomߚ௜ = 0.8, ݅ = 1,2,3,4 

nonlinearity in this sensor network is assumed, the system 
interference input is ݓ(݇) = ݁ି଴.ଶ௞  and the , (݇)݊݅ݏ

measurement noise is ݒ௜(݇) = ଵ௞య , ݅ = 1,2,3,4. It is assumed that 

the initial state of the system and the initial state of the filter are 
0, and the topology of the initial filter network is (0)ݎ = 1. 

The optimization problem is optimized by using MATLAB 
yalmip toolbox, and the optimal solutionߛ = 5.0485T is obtained. 
The simulation results are shown in Figure 2,3. 
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Figure 2 Markov chain ( )r k  

 
Figure 3 Filter network estimation error ݁௜(݇), ݅ = 1,2,3,4. 

 Figure 2 shows the evolution process of a Markov 
chain  Figure 3 depicts the comparison curve of filter . (݇)ݎ
network error when ߚ௜is taken as 0, 0.4, 0.8 and 1 respectively. 

 

ib 0 0.2 0.4 0.6 0.8 1 

g 5.98 5.84 5.65 5.41 5.04 4.51 

The table 1 reveals the influence of selecting distinct ߚ௜  on 
the robust performance of system H∞. According to figure 3 and 
table 1, it can be analyzed that the saturation nonlinearity of the 
sensor network affects the robustness of the system. When the 
WSN does not have the measurement saturation nonlinearity, the 
robustness of the system is the prime, and when the WSN 
completely has the measurement saturation nonlinearity, the 
robustness of this system is the worst. Contrasted with these two 
extreme situations, when the sensor network has the measurement 
saturation nonlinearity with a certain probability, The system 
attains better filtering accuracy while ensuring strong robustness.  
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