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Abstract—According to  the shortcomings of slow positioning 
speed and low detection accuracy of passive positioning that 
uses time difference of arrival (TDOA), an innovative 
location model of extreme learning machine (ELM) which is 
improved by Salp Swarm Algorithm (SSA) in view of 
Logistic Mapping, Opposition-Based Learning and Cauchy 
Mutation (LOCSSA) is put forward. The method firstly 
initializes the population by Logistic mapping and improves 
SSA by Opposition Based Learning and Cauchy mutation. 
Then uses LOCSSA to look for the optimal weights and 
biases of ELM. Finally, LOCSSA is used to locate the target. 
The results show that the ELM positioning model of 
LOCSSA has better accuracy and stability for target 
positioning, which demonstrate that the method is feasible. 

Keywords- time difference of arrival; salp swarm algorithm; 
extreme learning machine; Cauchy mutation 

I.  INTRODUCTION  
Passive positioning means that the observation station 

does not transmit radio signals to the detection target, but 
uses the electromagnetic wave signals radiated, forwarded 
and reflected by the target to locate the target. Because of 
its good concealment, strong survivability, long operating 
distance, strong anti-interference ability, it is widely used 
in the field of electronic reconnaissance. According to the 
different parameters of target measurement information, 
there are also many types of passive positioning systems, 
for example direction of arrival positioning (DOA), time of 
arrival positioning (TOA), and time difference of arrival 
positioning (TDOA). Among them, TDOA has a wide 
range of applications and research widely due to its 
advantages of high positioning accuracy, fast speed, low 
system complexity and low hardware requirements. 

Currently, domestic and foreign scholars are doing a lot 
of research on the TDOA problem. Common traditional 
algorithms include Taylor-series estimation method [1], 
constrained overall least squares method [2], Spherical 
Interpolation (SI) [3], Approximate Maximum Likelihood 
(AML) [4], such algorithms have poor positioning ability, 
poor convergence, and high requirements for 
reconnaissance stations. In addition to the above-
mentioned traditional algorithms, some researchers apply 
intelligent optimization algorithms to the TDOA problem. 
In 2006, Li J F et al. [5] put forward to employ Particle 
Swarm 0ptimization (PSO) to solve the problem of TDOA. 
Maja et al. [6] applied an Improved Genetic Algorithm 
(IGA) for TDOA positioning in 2016. In 2022, Chen G W 
et al. [7] led Whale Optimization Algorithm (WOA) into 

TDOA localization. The intelligent algorithm omits 
complex calculation formulas, generates lots of random 
points in the range during initialization, and finds the 
optimal solution in the random points through iteration. 
This type of approach conquers the disadvantage of least 
squares method requiring multiple observation stations. In 
2018, Song P et al. [8] gave an improved dragonfly 
algorithm (LACMODA). LACMODA was made use of 
looking for the optimal weights and biases of the ELM. 
Through the improved ELM, TDOA and the target latitude 
and longitude learning realizes the target position 
prediction. Compared with the traditional algorithm, 
although the accuracy has been greatly improved, the 
dragonfly algorithm has poor optimization accuracy and 
takes a long time, so there is still a large room for 
improvement. 

In 2017, Mirjalili et al. [9] proposed the salp swarm 
algorithm (SSA). The algorithm originated from the group 
behavior of salps in the deep sea. Through leading, 
following and other processes, an efficient optimization 
scheme was constructed. SSA has a simple optimization 
mechanism, few parameter settings, and has a strong 
global search capability. In this paper, LOCSSA is 
compared with other intelligent algorithms, LOCSSA is 
applied to the extreme learning machine parameter search, 
and the improved ELM is used to predict the target 
position to further improve the detection accuracy. 

II. THE PRINCIPLE AND METHOD OF TDOA 

A. The principle of multi-station passive positioning of 
TDOA 
A multi-station passive positioning of TDOA system 

usually consists of a master station and several auxiliary 
stations. The system receives the electromagnetic signal 
from the same air target, and uses the time difference 
between each auxiliary station and the main station to 
locate the target. As shown in Figure 1. As shown in Fig. 1. 

 
Figure 1.  Diagram of multi-station passive positioning of TDOA 
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In Fig. 1, T  is the radiation source target, 0R is the 

master station, 1 2 3, ,R R R is the auxiliary station, 

1, 2 3it i is the time difference between the time 
of arriving at the master station and the time of arriving at 
the auxiliary stations. The positioning principle takes the 
sensor nodes corresponding to the auxiliary station and 
the main station as the focus, and uses the distance 
difference corresponding to each time difference as a 
fixed value to form multiple sets of hyperbolas. By 
solving the multiple sets of hyperbolic equations, the 
estimated target position can be obtained. For the specific 
model, please refer to the introduction of Wang Y C et al. 
[10]. 

B. TDOA localization model based on ELM 
In 2004, Huang et al. [11] raised the extreme learning 

machine (ELM). It is a forward neural network that has 
single hidden layer. It determines the output weight by 
randomly selecting the weight of the neural network. 
Compared with traditional neural networks (such as BP 
neural network), ELM not only has a very fast learning 
rate, but also has good generalization performance, so it is 
widely used in various prediction models. 

Song Ping et al. [9] used the TDOA information of 
each sub-receiving station and transmitting station in the 
multi-base station joint positioning system as the ELM 
input parameter to fit the prediction of the detected target 
position in the detection area. The TDOA information of 
each receiving station is used as the input layer parameter 
of ELM in the passive positioning model of ELM. 
Scanning and detecting the target area, it is assumed that 
the time of the target transmission signal received by the 
main receiving station is 0t , and the time of receiving the 
target transmission signal received by each sub-receiving 
station is , ,1 2 3t t t , so the input vector V  of the ELM 
input layer represents as follows: 

10 20 30t , , ,t tV  (1) 

In (1): 0it  represents the difference between the 

time it  when the receiving station i  receives the target 

echo and the time 0t  when the main receiving station 0R  
receives the target echo, 1, 2,3i . 

The latitude and longitude of the detected target is 
used as the output vector of ELM. The ELM output vector 
O  can be expressed as:  

A A, ,B LO   (2)  

In (2): AB represents latitude, AL  represents 
longitude. 

III.  IMPROVED SSA TO OPTIMIZE THE LOCALIZATION 
MODEL OF ELM 

A.  Improvement of SSA 
1) Logistic mapping initialization population 

Logistic mapping [12] is a one-dimensional chaotic 
map that is widely used and has a very simple form, and 
its formula is Eq. (3):  

 1 (1 ),i i iz z z  (3) 
in (3), 0,1, 2,i ,  are the control parameters, 

0,4  , 0,1iz . When 4 , it shows typical 
chaotic characteristics. Population initialization affects 
greatly on the convergence speed and optimization 
performance of SSA. Logistic mapping is used to 
initialize the salp population in this paper. 

2) Opposition Based Learning 
The substance of Opposition Based Learning (OBL) 

[13] means that the current solution and the reverse 
solution are searched at the same time in the process of 
finding the optimal solution, and the better solution is 
used as the problem solution. It can expand the search 
scope and improve the search efficiency of the algorithm. 
The leader only updates its position under the guidance of 
the food source. Due to the lack of prior knowledge, it is 
difficult to determine whether the current food source is in 
the global optimum. If the food source is in the local 
optimum, the entire salps chain group will gather in the 
local optimum area, and the population diversity will be 
lost, which will cause the algorithm to converge to the 
local optimum. Therefore, OBL can enhance the ability to 
flee local optimum of SSA. The description of generating 
the inverse solution of individual salps using OBL is as 
follows: 

,1 ,2 ,, , ,t t t t
i i i i NX X X X t

,N,
t

NX  is a feasible solution of 

the t  generation of the problem, ,
t
i jX is the position of 

the i  individual in the j  dimension, and '
,
t
i jX  is the 

inverse solution corresponding to ,
t
i jX . The formula is 

expressed as follows: 
 '

, ,_ _ ,t t
i j j j i jX c ub c lb X  (4) 

in (4): _ jc ub and _ jc lb are respectively the upper and 

lower limits of the j  dimension of the individual at the 

current iteration t , 1,i D  , D  is the amount of 

individuals, 1,j N , N  is the space dimension of the 
feasible solution. 

 
20

exp 1 ,
_s
lP

Max iter
 (5) 

in (5), l  is the current number of iterations, and 
_Max iter  is the total number of iterations. 

Calculate the value of sP according to (5), sP  
compare with the size of the random number, if the 
random number is better than sP , perform OBL to renew 
the individual position, otherwise keep the individual 
position. 

3) Cauchy Mutation 
The Cauchy mutation operator is introduced to the 

optimal individual in SSA, and new individuals are 
produced through the mutation operation to expand the 
population search scope. After the mutation operation, the 
new individual can effectively lead other individuals to 

147



flee the local optimum. Cauchy mutation can avoid getting 
into local optimum. Using the standard Cauchy 
distribution for mutation processing can help individuals 
after mutation jump out of local extreme values quickly. 
According to (6), the current optimal individual is mutated: 
 * (0,1),t t t

newF F F Cauchy  (6) 

in (6): tF  is the position of the food in the t  generation, 
t

newF  and is the position after mixed mutation. 
The solution generated by the Cauchy mutation is 

accepted or not by the Metropolis criterion [14]. 

new g 

new g 

1,
,

exp / ,  otherwise m
e

f f
P

f f T
 (7) 

in (7): eT  is the current temperature, and newf  represents 
the solution after mutation. 

Obtain the fitness value of the new and old food source 
positions after the perturbation mutation update is 
performed on the food source position, and use (7) to 
calculate mP  through the fitness value. Compare the size 

of mP  and the random number, if the random number is 

better than mP , give up the position of the new food 
source, otherwise accept the position of the new food 
source. The algorithm selects the optimal value while 
preserving the potential foraging position. 

B. LOCSSA-ELM target localization model 
Huang G B et al. [11] proposed an extreme learning 

machine (ELM). The sample can be obtained by a least 
square method to obtain a better output weight without 
secondary adjustment, and the entire training of the 
network is completed. However, there is still room for 
further optimization of the prediction accuracy of ELM, 
and intelligent algorithms can be applied to search the 
optimal weights and biases of ELM to make the results 
better. 

Compared with SSA, LOCSSA has a better 
optimization effect. LOCSSA is used to find the optimal 
input weights and hidden layer biases of the ELM, and the 
optimized ELM network is applied to the target 
positioning to realize the optimization. The positioning of 
the target can reach better positioning accuracy. The steps 
of LOCSSA-ELM are shown in Fig. 2: 

In addition, for estimating the optimization 
performance of the algorithm, (8) is applied here for the 
fitness evaluation function: 

 *

1
,

M

i i
i

f m P P  (8) 

in (8): M  represents the total number of input training 
data, *

iP  is the position predicted by the model for the 

input target, iP  is the actual input target position, and m  
is a non-zero constant. 

IV. SIMULATION EXPERIMENT AND ANALYSIS 

A. Comparative analysis of algorithm performance 
results 

1) Test function selection 
For measuring the result of LOCSSA, seven 

benchmark functions [15] are selected here, and the 
information is shown in Table .  

2) Algorithm comparison 
This paper selects three relatively new swarm intelligence 
optimization algorithms—Dragonfly algorithm (DA) [16], 
Grey Wolf algorithm (GWO) [17], Salp Swarm algorithm 
(SSA) [9] and LOCSSA for comparison, and the 
population number of the above four algorithms is 
assigned to 10, the dimension of the problem is assigned to 
30, the number of iterations of the algorithm is assigned to 
300, the basic parameters of the four algorithms are the 
same, and 30 optimization experiments are carried out for 
each function. The simulation results are shown in Table 

. Compared with other functions, LOCSSA is closer to 
the optimal value in the field of mean and variance, 
indicating that LOCSSA has good optimization results and 
high stability. Compared with the SSA, LOCSSA has 
higher accuracy in solving the problem as a whole, and it 
is difficult to get into the local optimal solution of the 
problem. 

 
Figure 2.  LOCSSA-ELM flow chart 
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TABLE I.  BENCHMARK FUNCTIONS 

Function Function 
name 

Dimension Search 
range 

Optimal 
value 

1f  Sphere 30 [-100,100] 0 

2f  Schwefel 
2.22 30 [-10,10] 0 

3f  Schwefel 
2.21 30 [-100,100] 0 

4f  Rosenbrock 30 [-30,30] 0 

5f  Rastrigin 30 [-5.12,5.12] 0 

6f  Penalized 1 30 [-50,50] 0 

7f  Ackley 30 [-32,32] 0 

TABLE II.  OPTIMIZATION RESULTS OF LOCSSA 

1f

2f

3f

4f

5f

6f

7f

 

B. Positioning Model Validation 
For the sake of checking the validity of the research 

model in this paper, a master station 0R  and 3 auxiliary 

stations 1 2 3, ,R R R  are selected to form a time difference 
positioning system. Among them, the longitude and 
latitude of each station are respectively taken as: 0R  

(30.5443°N, 114.3660°E), 1R  (30.4013°N, 114.2438°E), 

2R  (30.4081°N, 114.5117°E), 3R  (30.3661°N, 
114.3507°E), The distance between each station is about 
20km, the distance between the target and each station is 
30~70km, and the time measurement accuracy of each 
station is 100ns . In the experiment, 500 groups of TDOA 
data were collected, and the collected TDOA data were 
split into training set and test set in accordance with the 
ratio of 9:1. In the experiment, for further checking the 
superiority of the model in this paper, the ELM, DA-ELM, 
SSA-ELM and the LOCSSA-ELM model in this paper are 

compared. During the experiment, the normalized data 
collected was input into the ELM, DA-ELM, SSA-ELM 
and LOCSSA-ELM positioning models, the population 
size of the three intelligent optimization algorithms was 
assigned to 10, and the maximum number of iterations was 
assigned to 50. The search space of the solution vector is 
assigned to 1,1 , in the LOCSSA-ELM localization 

model, the temperature eT  is 300.  
For assessing the effect of each positioning model, the 

mean absolute error cc is used to evaluate the accuracy of 
the prediction of each model.  

 *
AE

1

1 ,
TN

n n
T

M P P
N

 (9) 

in (9): TN  is the total number of test samples. nP  is the 
position predicted by the model for the input target, and  

nP  is real target position. The smaller AEM  is, the higher 
the prediction accuracy of the algorithm is. Fig. 3 and Fig. 
4 show the experimental results. 

Fig. 3 shows the prediction of the 50 target locations in 
the test set by the ELM network positioning model 
optimized by LOCSSA. The horizontal axis is longitude 
and the vertical axis is latitude. It can be seen that the 
latitude and longitude error of the target predicted by 
LOCSSA-ELM and the latitude and longitude of the actual 
target is very small, and the position of each point is very 
close to the real value. 

 

Figure 3.  Target position prediction map 

 

Figure 4.  Longitude and latitude error of target prediction 
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Fig. 4 indicates the comparison chart of the target 
prediction latitude and longitude errors of different ELM 
models. The horizontal axis is the sample ordinal, and the 
vertical axis is AEM . It can be seen that in the ELM 
positioning model, compared with other positioning 
models, the latitude and longitude errors of the LOCSSA-
ELM model are relatively small as a whole. 

Therefore, the LOCSSA-ELM localization model 
looked forward in this paper is more accurate in predicting 
the target position than others. It indicating that the 
algorithm is effective. 

V. CONCLUSION 
Due to the problems of poor stability and low 

exploration accuracy of traditional passive time difference 
localization algorithms, the LOCSSA-ELM localization 
model which optimizes ELM proposed in this paper, not 
only shows better global search performance when 
optimizing multi-dimensional problems, it has better 
performance and optimization speed. The ELM positioning 
accuracy after LOCSSA optimization is also better than 
that of other ELM positioning models, and has better 
robustness, which fully shows the effectiveness of the 
method in passive positioning of TDOA in this paper.  
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