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Abstract—In this paper, creatively combining Transformer
with image super-resolution reconstruction, we proposes a
multi-scale multi-stage single image super-resolution recon-
struction algorithm based on Transformer (MSTN). The
algorithm uses Transformer as a feature sharing module,
thus it realizes network parameter sharing, dynamically
focuses on the correlation between feature information of
adjacent stages, and then extracts the high-frequency texture
information embedded in the current stage features from
the feature information learned in the previous stage, which
achieves a coarse-to-fine enhancement of image reconstruc-
tion. Experiments show that our method can not only per-
form better image super-resolution reconstruction compared
with other advanced methods, but also reduce the network
parameters to a great extent.

Keywords-Super resolution; Transformer; computer vi-
sion; deep learning; image processing;

I. INTRODUCTION

Image super-resolution reconstruction is a popular re-

search subject in the field of computer vision. It refers

to interpolating low-resolution images to obtain super-

resolution(SR) images. But mapping a low-resolution(LR)

image to a SR image is a highly uncertain solution

problem. Under this solution space, one LR image can

generate several different SR images, and one SR image

can also get several different LR images. Therefore, for

the above problem, scholars have proposed a variety of

SR methods to solve this phenomenon.

Dong et al. firstly proposed a three-layer neural net-

work SRCNN [1] based on image super-resolution recon-

struction and achieved good results compared with the

previous conventional super-resolution methods. Kim et

al. proposed VDSR[2] with 20 layers in depth. Tai et al.

designed DRRN [3] by combining skip connections with

recursive structure. Kim et al. proposed DRCN [4] with

recursive structure. These network structures are based

on first interpolating the images to the same size as the

high-resolution(HR) before feeding them into the network

structure for training, but this increases the number of

parameters in the network as well as greatly increases the

computation time. In order to solve the above mentioned

problems, Dong et al. proposed the FSRCNN [5] network

structure and Shi et al. proposed the ESPCN [6] network

structure. These two network structures represent two

different methods of upsampling: FSRCNN uses decon-

volution to implement the image upsampling operation,

and ESPCN uses subpixel convolution to implement the

image upsampling operation.These two strategies greatly

reduce the network parameters and save computing time.

As the network deepens it can cause the network

to be prone to gradient explosion/gradient disappearance

during training. To avoid the above problems, Lim et al.

proposed deep EDSR [7] network architecture by skip-

ping connections. Tong et al. proposed the SRDenseNet

network architecture by densely connecting each layer

of the network. Zhang et al. proposed the RDN net-

work architecture by combining residual connectivity and

dense connectivity. All these network architectures not

only avoid the gradient explosion/gradient disappearance

problem but also effectively allow the flow of information

from the bottom layer to the top layer in the network

by using skip connections or dense connections, which

avoid the problem of information loss as the depth of the

network is superimposed.

Although super-resolution reconstruction has made

wonderful advances in convolutional neural networks,

there are some limitations on CNN-based network models.

• Most super-resolution network structures are single-

stage end-to-end forms, while ignoring the multi-

stage feature information in the network reconstruc-

tion process.

• Most network models train specific scales to produce

the corresponding super-resolution results, and there-

fore need to train corresponding network models for

different desired scales, which not only increases the

time cost but also increases the calculation cost.

To address these problems, we propose the multi-scale

multi-stage single image super-resolution reconstruction

(MSTN) algorithm based on Transformer to reconstruct

SR images, which can effectively use feature information

from different stages to reconstruct multi-scale SR images.

To achieve this, the model uses Transformer as a feature

sharing module (TFM) thus it focues on the coupling

relationship between T−1 stage image feature information

and T stage feature information, which in turn allows

the highly coupled feature information from T − 1 stage

to further play a role in the reconstruction process of

T stage, and therefore it perform image super-resolution

reconstruction from coarse to fine.

II. METHODOLOGY

Fig. 1 shows the proposed image super-resolution net-

work architecture. Our network takes the LR image after

bilinear interpolation as input and outputs the multi-scale
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Figure 1. The overall architecture of the network, where the purple module represents the feature sharing module, is shown in Fig. 2. The network
architecture is optimized through multiple stages, and each stage outputs multiple high-resolution SR patches, while the feature sharing module is
used to dynamically focus on the correlation of feature information in adjacent stages, which shares multi-stage network parameters and accelerates
network training.

SR images simultaneously. The whole network architec-

ture is optimized via T phases. Each stage starts with fea-

ture extraction through convolutional layers with channel

attention (CA) in a residual dense connection. The network

is further optimized by feature sharing module (TFM) for

T − 1 stage feature information extraction, which allows

high coupling feature information for SR reconstruction

in T stage. Finally the overall network architecture is

constrained with the help of loss of attention mechanism.

A. Network architecture

In terms of network architecture, the network architec-

ture proposed in this paper is similar to the C3Net [8].

Both of them are optimized by iteratively T stages to

implement image super-resolution reconstruction. Mean-

while, the network parameters of each stage are shared,

which reduces the network parameters. To improve the

network feature extraction capability, our network archi-

tecture also adopts the CCA [8] module. Therefore, this

paper will not describe the CCA in detail and focus on the

feature sharing module (TFM).

B. Feature sharing module

Our network makes full use of the high-frequency

texture information in T − 1 stage, and therefore we

propose a new feature sharing module (TFM) as shown

in Fig. 2, which reduces the network parameters and

performs SR reconstruction from coarse to fine. The

network first records the feature information of T−1 stage

by Transformer, followed by calculating the correlation

between T stage and T−1 stage features by inner product,

then outputting the correlation attention map between T−1
stage feature information and T stage feature information

by Softmax function. Finally it multiplies the feature

information of stage T and the attention map by dot

product operation to obtain the high frequency texture

Figure 2. With Transformer dynamically focusing on the correlation
between the multi-scale feature information of the T th stage and the
feature information of the (T − 1)th stage, the higher the correlation
between the features of adjacent stages, the more high-frequency texture
information can be reconstructed.

information of the current stage. Meanwhile, for the better

acquisition of feature information of the network during

propagation, the network still uses CCA for feature extrac-

tion to enhance the network feature extraction capability.

F (T )
TFM = G[XCCA,F (T−1)

TFM ], (1)

where G is feature sharing unit. XCCA is the output of the

CCA module.

C. Loss attention mechanism

In order to constrain the network reconstruction loss at

different stages at different scales, the network uses the

loss-attention mechanism proposed by C3Net to constrain

the network, thus improving the SR reconstruction capa-

bility of the model.

L(×1)
Θ =

1

T

1

N

T∑

t=1

N∑

m=1

‖FΘ(I
(m)
LR )− I

(m)
HR ‖1, (2)
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Table I
THE AVERAGE PSNR/SSIM RESULTS OF DIFFERENT METHODS UNDER ×2 AND ×4 MODELS ARE COMPARED ON FOUR BENCHMARK DATASETS.

Set5 Set14 BSD100 Urban100
Scale Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRCNN[1] 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946
ESPCN[6] 37.00 0.9559 32.75 0.9098 31.51 0.8939 29.87 0.9065
FSRCNN[5] 37.05 0.9560 32.66 0.9090 31.53 0.8920 29.88 0.9020
VDSR[2] 37.53 0.9590 33.05 0.9130 31.90 0.8960 30.77 0.9140

×2 DRCN[4] 37.63 0.9588 33.04 0.9118 31.85 0.8942 30.75 0.9133
LapSRN[9] 37.52 0.9590 33.08 0.9130 31.08 0.8950 30.41 0.9101
DRRN[3] 37.74 0.9591 33.23 0.9136 32.05 0.8973 31.23 0.9188
Ours 37.98 0.9610 33.40 0.9158 32.15 0.9000 32.04 0.9269

SRCNN[1] 30.50 0.8573 27.50 0.7513 26.90 0.7103 24.52 0.7226
ESPCN[6] 30.66 0.8646 23.45 0.5980 23.92 0.5740 21.20 0.5540
FSRCNN[5] 30.73 0.8601 27.59 0.7535 26.96 0.7128 24.60 0.7258
VDSR[2] 31.36 0.8796 28.02 0.7678 27.29 0.7252 25.18 0.7525

×4 DRCN[4] 31.56 0.8810 28.15 0.7627 27.24 0.7150 25.15 0.7530
LapSRN[9] 31.54 0.8811 28.09 0.7694 27.32 0.7264 25.21 0.7553
DRRN[3] 31.68 0.8888 28.21 0.7720 27.38 0.7284 25.44 0.7638
Ours 32.14 0.8920 28.41 0.7761 27.30 0.7330 25.95 0.7798

Table II
COMPARE THE PARAMETERS OF EACH METHOD AND THE AVERAGE SSIM VALUE OF THE SET5 DATASET UNDER THE ×2 SCALE

EDSR[7] SRMDNF[10] CARN[11] MSRN[12] CRN[13] C3Net[8] Ours

SSIM 0.9602 0.9600 0.9590 0.9605 0.9610 0.9612 0.9611
Parameters 40.7 Mb 1.51 Mb 1.59 Mb 5.89 Mb 9.47 Mb 2.41 Mb 1.68 Mb

L(×2)
Θ =

1

T

1

N

T∑

t=1

N∑

m=1

‖FΘ(I
(m)
LR )− I

(m)
×2HR‖1, (3)

L(×4)
Θ =

1

T

1

N

T∑

t=1

N∑

m=1

‖FΘ(I
(m)
LR )− I

(m)
×4HR‖1, (4)

where F is the proposed network, and Θ denotes all the

parameters of the network. I
(m)
LR is the mth LR image.

I
(m)
HR , I

(m)
×2HR, and I

(m)
×4HR are the mth goundtruth HR

image for the scale of ×1, ×2, and ×4, respectively. ω1,

ω2, and ω3 are used to balance the loss between different

scales. These three parameters are studied in the training

process of the network.

Ltotal = ω1L(×1)
Θ + ω2L(×2)

Θ + ω3L(×4)
Θ . (5)

III. EXPERIMENT

A. Datasets & evaluation criteria

In this paper, 800 training images from the DIV2K

dataset are used to train the proposed network architecture.

Set5, Set14, Urban100, and BSD100 are also used to test

the generalization ability of the proposed network. Finally,

peak signal-to-noise ratio (PSNR) and structural similarity

(SSIM) are used as evaluation criteria.

B. Experimental comparison

In this paper, the proposed method’s performance

is evaluated on four benchmark datasets, namely Set5,

Set14, Urban100, and BSD100. The network com-

pares the reconstruction results at ×2 and ×4 scale

with seven current state-of-the-art methods. These meth-

ods are SRCNN[1], ESPCN[6], FSRCNN[5], VDSR[2],

DRCN[4], and LapSRN[9], DRRN[3]. Finally the results

are shown in Table I

From Table II, it can be seen that at ×2 scale, the

proposed method achieves not only good values of SSIM,

but also the best network parameters for the Set5 bench-

mark dataset. It is fully demonstrated that the feature

sharing module proposed in this paper largely reduces the

number of network parameters and improves the network

reconstruction performance.

IV. CONCLUSION

In this paper, we propose a multi-scale multi-stage

single image super-resolution reconstruction algorithm

(MSTN) based on Transformer to improve image super-

resolution reconstruction. The network reconstructs SR

images with multi-scale resolution simultaneously in a

multi-stage manner, and uses the Transformer as a feature

sharing module (TFM) to dynamically focus on feature-

related information between adjacent stages during the

reconstruction process, which makes full use of the high-

frequency feature information learned in the T-1 stage to

achieve better T stage SR image reconstruction. Finally,

we train the network on publicly available datasets and

simultaneously test on its four benchmark datasets to

demonstrate the generalization ability of the proposed

network.
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