
Multilayer Perceptron-based Surrogate Models for
Finite Element Analysis

Lawson Oliveira Lima, Julien Rosenberger, Esteban Antier, Frédéric Magoulès
Université Paris-Saclay, CentraleSupélec, MICS, Gif-sur-Yvette, France

Email: frederic.magoules@hotmail.com

Abstract—Many Partial Differential Equations (PDEs) do not
have analytical solution, and can only be solved by numerical
methods. In this context, Physics-Informed Neural Networks
(PINN) have become important in the last decades, since it
uses a neural network and physical conditions to approximate
any functions. This paper focuses on hypertuning of a PINN,
used to solve a PDE. The behavior of the approximated solution
when we change the learning rate or the activation function
(sigmoid, hyperbolic tangent, GELU, ReLU and ELU) is here
analyzed. A comparative study is done to determine the best
characteristics in the problem, as well as to find a learning rate
that allows fast and satisfactory learning. GELU and hyperbolic
tangent activation functions exhibit better performance than
other activation functions. A suitable choice of the learning rate
results in higher accuracy and faster convergence.

Index Terms—Multilayer perceptron; Neural networks;
Physics-Informed Neural Networks; Partial Differential Equa-
tions; Hypertuning;

I. INTRODUCTION

Artificial intelligence draws people attention thanks to its

various spectrum of application fields such as language pro-

cessing, computer vision or decision making. Lagaris de-

scribed in [17] a general method to solve a PDE with a

neural network instead of classical methods as Finite Element

Methods (FEM). Finite Element Methods [1] [2] are powerfull

methods to approximate solutions of a PDE. The accuracy

of these methods can be improved using various stabilization

techniques like [6], [5], [4], [3]. Since FEM solution requires

the solution of a large linear system, computation cost becomes

prohibitive. As an alternative, using neural network [15] will

help construct function from one already forced to satisfy the

boundary conditions of the problem. The method is broaden

in [16] where the straightforward method of solving a PDE

on complex geometries without assisting the neural network

to satisfy the boundary conditions is highlighted [18]. In the

1990’s, Physics-Informed Neural Networks were first intro-

duced and show great expectations in terms of efficiency and

versatility [19].

The paper is organized as follows. In Section II, we present

concepts in Neural Networks, Partial Differential Equations

and Physics Informed Neural Networks. In Section III, we

present the methodology followed to allow hypertuning of the

parameters. In Section IV, we present numerical results and

we conclude in Section V.

II. NEURAL NETWORKS FOR SOLVING PARTIAL

DIFFERENTIAL EQUATIONS

Neural Network: We will focus on the study of Multilayer

Perceptron (MLP), one of the first neural networks developed.

It consists in an input layer, a vector of n components, and an

output layer, a vector of p components. The input is subjected

to a series of linear operations and nonlinear activations are

applied trough, so called hidden layers, to get the output. A

MLP can be seen as a function: N : Kn → K
p. If we note gi

the (non-linear) activation function, and Wi and bi the weight

and bias matrix of the ith-hidden layer. Then, for a MLP with

k hidden layers we can write:

∀x ∈ K
n, N (x) = gk(bk +Wkgk−1(bk−1

+Wk−1gk−2(. . . (b1 +W1x))))

Through training epochs, the MLP passes through the training

dataset coupled with gradient descent so that N approaches a

function of interest.

Our goal is to solve a Partial Differential Equation (PDE)

defined within a domain Ω:

(E) :

{ Q(u,∇u,Hu, . . .)(x) = 0 inside Ω
R(u,∇u,Hu, . . .)(x) = f(x) on ∂Ω

where Q and R are linear operators, Ω is the domain con-

sidered, ∂Ω the boundary of the domain considered, and

u : Kn → K
p the solution to (E).

We want to replace u with a neural network N and train it

to get a solution of (E). However, this would mean training

on both the domain and its boundary. To avoid this case,

as the PDE is always defined with boundary conditions, we

reformulate the problem by replacing u with a function Ψ
defined as: Ψ(x) = A(x) + F (x)N (x) where A verifies the

boundary conditions, and F is null on the boundary. As such,

we unconstrained the problem, and the neural network can

train inside the domain, with the boundary conditions handled

by the above mentioned functions.

Activation functions: Activation functions set the be-

haviour of a neuron at a low level in the network. Their impacts

can be more or less fast to compute and drastically change the

convergence speed and quality. We consider in Equations (1a)-

(1e) the most rampant activation functions in the state-of-the-

art articles:

∀z ∈ R, σ(z) :=
1

1− e−z
(1a)

115

2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science
(DCABES)

2473-3636/22/$31.00 ©2022 IEEE
DOI 10.1109/DCABES57229.2022.00045

∀z ∈ R, tanh(z) :=
ez − e−z

ez + e−z
= σ(2z)− σ(−2z) (1b)

α ∈ [0, 1], ∀z ∈ R, ReLU(z) := max(αz, z) (1c)

α ∈ R
∗, ∀z ∈ R, ELU(z) :=

{
z, if z ≥ 0
α(ez − 1), if z < 0

(1d)

∀z ∈ R, GELU(z) = 0.5z

(
1 + tanh

[√
2

π
(z + 0.044715z3)

])
(1e)

The first one Equation (1a) coming from an imitation of

biological neurons’ behaviour is the sigmoid. Inspired from

the previous one, but zero-centered, is the hyperbolic tangent

Equation (1b). Yet, activation functions easier and faster

to compute arose. The most notorious one is the Rectified

Linear Unit (ReLU) function Equation (1c) and it holds

many variants. A smoother variant is the Exponential Linear

Unit (ELU) function. This function is defined Equation (1d).

The final variant to introduce is the Gaussian Error Linear

Unit (GELU) function presented in [20]. This function tries

to embed the Dropout regularizer by randomly multiplying

outputs of neurons to the activation function itself. For using

this function, the inputs have to be batch normalized first.

The GELU function is defined Equation (1e). The different

activation functions are represented in Figure 1.

(a) Sigmoid (b) Hyperbolic tangent

(c) ReLU (d) ELU

(e) GELU

Fig. 1: Activation functions.

III. METHODOLOGY

Problem Statement: We want to solve the following PDE

in a square domain Ω = [0, 1]
2

using Physics-Informed Neural

Networks (PINN).

Δψ(x, y) + ψ(x, y) · ∂ψ(x, y)
∂y

= f(x, y) on Ω = [0, 1]
2

(2)

where f(x, y) = sin(πx)(2 − π2y2 + 2y3 sin(πx)) and with

the boundary conditions:{
ψ(0, y) = ψ(1, y) = ψ(x, 0) = 0
∂ψ
∂y (x, 1) = 2 sin(πx)

This problem has an analytical solution: ψth(x, y) =
y2 sin(πx). Thus, to solve it, we define our loss function as:

L = ||Δψ(x, y) + ψ(x, y) · ∂ψ(x, y)
∂y

− f(x, y)||2
with ψap(x, y) defined as ψap(x, y) = A(x, y) +
F (x, y)N(x, y) and with A and F equal to A(x, y) =
y sin(πx) and F (x, y) = sin(x−1) sin(y−1) sin(x) sin(y). A

careful reader will notice the lack of knowledge about the exact

solution of the PDE. Furthermore, the model is called a PINN

as the loss takes into account the residual of Equation (2).
Implementation: The implementation of the multilayer

perceptron is similar to [7] [8] and is done using the Python li-

brary Jax, which has high performance and low computational

cost due to being built using XLA, and is thus recommended

for simulations involving neural networks. Furthermore, it can

be used to vectorize functions and execute them faster in

Graphics Processing Unit (GPU). The steps of the model used

are described in the algorithm below.

Solving PDEs using neural networks (PINN method)

Input domain and boundary-coords, tolerance, A and F
Output trained-PINN

set max-epoch, max-train-step, batch-size, validation-size

set learning rate and activation function

while loss ≥ tolerance do
for epoch ≤ max-epoch do

sample-coords ← sample batch-size points + noise

loss ← compute L2-norm on PINN-model and the PDE

apply gradient descent and backpropagation to reduce

loss

end for
end while
make the validation of the model

return PINNmodel

To achieve a better performance in a shorter time, we

have vectorized it to compute in parallel the neural network

evaluation and make gradient descent on GPU.
Hyperparameters: The hypertuning comes when one

wants to construct a model and a training that will end to a low

validation error. Let’s list all the hyperparameters involved in

this scheme: (i) l_units: list of integers depicting the num-

ber of hidden layers and the number of neurons per layer of the

116

sequential machine learning model; (ii) l_activations:

list depicting the activation functions of each layer of the

model; (iii) noise: float in [0, 1] conditioning the use of a

Gaussian layer of mean 0 after the input layer; (iv) stddev:

the standard deviation of the Gaussian layer when it is used;

(v) optimizer: string depicting the optimizer used; (vi)

learning_rate: float setting the learning rate of the previ-

ous optimizer; (vii) epochs_max: integer setting the number

of maximum epoch loops; (viii) batch_size: integer setting

the number of points extracted from the mesh to construct

the training set at each epoch loop. Hypertuning consists of

adapting the parameters of the neural network in order to

obtain a model that has the lowest validation error. To do

this, several models are trained and the one with the best

performance is chosen

IV. NUMERICAL EXPERIMENTS

For the hyperparameters, we used batch size = 50 and a

multilayer perceptron with 3 completely connected layers, the

first layer has 2 neurons, the second 30 and the last 1, each

followed by the activation function. Thus the neural network

considered has 121 trainable parameters: hidden layer = 2 ∗
30 + 30 = 90 and output layer = 30 ∗ 1 + 1 = 31.

A. First parameter: Learning rate

Studying Equation (2) we note that each activation function

has a learning rate that improve its accuracy and reduce the

loss function. Thus, to get a good solution, we have to find

a model that minimizes it. It’s possible to see the behavior

between learning rate and loss function in Figure 2 for each

one of the studied functions. In order to find it, we have used

grid and random search in pre-defined intervals.

Grid search: Grid search is a very common way to make

hyperparameter tuning. It consists of determining a domain

and then using points that are uniformly distributed. So, to

use this method, we chose 5 intervals with 50 learning rates in

each and then ran simulations to obtain the best loss function.

The mean absolute error and respective learning rate for each

activation function using grid search are presented in Table I.

MAE at epoch Tanh Sigmoid GELU ELU ReLU

10000 1.71 · 10−5 3.10 · 10−5 1.84 · 10−4 5.38 · 10−5 0.016
20000 1.43 · 10−5 2.18 · 10−5 9.92 · 10−6 1.65 · 10−4 0.016
50000 1.05 · 10−5 1.08 · 10−5 8.03 · 10−6 1.57 · 10−4 0.016

Learning rate 3.2040 · 10−4 1.3673 · 10−5 1.1837 · 10−4 1.1837 · 10−3 6.6939 · 10−2

TABLE I: Grid search (grey is the best accuracy).

Random search: Random search is similar in principle to

grid search, using points distributed over a domain. However,

the main difference is that they are spread randomly, which

allows testing parameters that would not be tested using the

first method. Thus, this procedure was performed on the same

intervals as previously used. Results of the mean absolute error

and respective best learning rate for each activation function

using random search are collected in Table II.

(a) Sigmoid (b) Tanh

(c) ReLU (d) ELU

(e) GELU

Fig. 2: Learning rates.

MAE at epoch Tanh Sigmoid GELU ELU ReLU

10000 3.10 · 10−5 6.78 · 10−5 1.85 · 10−4 5.48 · 10−5 0.016
20000 2.18 · 10−5 5.75 · 10−5 1.47 · 10−5 5.86 · 10−5 0.016
50000 1.12 · 10−5 1.08 · 10−5 6.31 · 10−6 1.08 · 10−4 0.016

Learning rate 3.2915 · 10−4 1.2626 · 10−5 1.1891 · 10−4 9.5295 · 10−4 4.1886 · 10−2

TABLE II: Random search (grey is the best accuracy).

Analysis: Mean absolute error and respective learning

rate for each activation function with best learning rates

are presented in Table III. We can see that random search

presented the lowest errors for almost all functions, except for

sigmoid. An expected result, since it does not follow a pattern

to test each learning rate. Furthermore, it can be seen that the

average absolute error obtained is quite small for GELU, tanh

and sigmoid. We compare for the same accuracy with FEM on

GPU. The linear system of equations is solved with the Alinea

library [12]. The problem is reformulated in parallel with a

domain decomposition method [13] and is solved on GPU [11]

[9]. The local solver inside each subdomain is performed with

the conjugate gradient method [10] involving a auto-tuning of

the GPU memory [14]. We obtain a computational time of 25

seconds for 50 103 epochs for the MLP surrogate models and

for the FEM method involving 2.5 106 nodes, more time.

B. Second parameter: Activation function

With the best learning rate for each activation function, we

report in Figure 3, the comparison in order to find the best

solution to the problem. The activation functions ELU and

ReLU did not obtain satisfactory results since they reached

a local minimun that did not allow for good accuracy. On

the other hand, GELU has the best performance and the

hyperbolic tangent has similar results. Finally, we see that sig-

117

MAE at epoch Tanh Sigmoid GELU ELU ReLU

10000 1.71 · 10−5 3.10 · 10−5 1.85 · 10−4 5.48 · 10−5 0.016
20000 1.43 · 10−5 2.18 · 10−5 1.47 · 10−5 5.86 · 10−5 0.016
50000 1.12 · 10−5 1.05 · 10−5 6.31 · 10−6 1.08 · 10−4 0.016

Learning rate 3.2040 · 10−4 1.3673 · 10−5 1.1891 · 10−4 9.5295 · 10−4 4.1886 · 10−2

TABLE III: Best learning rates (grey is the best accuracy).

(a) Training (sigmoid) (b) Absolute error (sigmoid)

(c) Training (hyperbolic tan-
gent)

(d) Absolute error (hyperbolic
tangent)

(e) Training (ReLU) (f) Absolute error (ReLU)

(g) Training (ELU) (h) Absolute error (ELU)

(i) Training (GELU) (j) Absolute error (GELU)

Fig. 3: Training and absolute error.

moid has performance as good as GELU and tanh. Additional

simulations with varying hyperparameters did not change the

performance of one over the other.

V. CONCLUSIONS

It was observed that GELU and hyperbolic tangent has

lower absolute error for a smaller number of epochs, a very

favorable characteristic, since it makes the neural network

easier to train. Also, sigmoid performed well, but ELU and

ReLU did not obtain satisfactory results. Moreover, with the

optimization of the learning rate in the hyperbolic tangent and

GELU a good mean absolute error was obtained for 10 000

and 20 000 epochs, which enable us to reduce the number of

epochs and the training time.

VI. ACKNOWLEDGEMENTS

The authors would like to thank M. Besbes, A. Paun, and

G. Ruault for the useful discussions.

REFERENCES

[1] P.G. Ciarlet. The Finite Element Method for Elliptic Problems. SIAM.
2002.

[2] T. Hughes. The Finite Element Method: Linear Static and Dynamic Finite
Element Analysis. Dover Publications Inc. 2003.

[3] J.E. Dolbow and L.P. Franca. Residual-free bubbles for embedded Dirich-
let problems. Computer Methods in Applied Mechanics and Engineering.
197(45-48):3751-3759, 2008.

[4] F. Magoulès and H. Zhang. Three-dimensional dispersion analysis and
stabilised finite element methods for acoustics. Computer Methods in
Applied Mechanics and Engineering, 335:563-583, 2018.

[5] I. Harari and F. Magoulès. Numerical investigations of stabilized finite
element computations for acoustics. Wave Motion, 39(4):339-349, 2004.

[6] A. Russo. Streamline-upwind Petrov/Galerkin method (SUPG) vs
residual-free bubbles (RFB). Computer Methods in Applied Mechanics
and Engineering. 195(13–16):1608-1620, 2006.

[7] F. Magoulès, H.-X. Zhao, and D. Elizondo. Development of an RDP
neural network for building energy consumption fault detection diagnosis.
Energy and Buildings. 62:133-138, 2013.

[8] H.-X. Zhao and F. Magoulès. A review on the prediction of build-
ing energy consumption. Renewable and Sustainable Energy Reviews,
16(6):3586-3592, 2012.

[9] A.-K. Cheik Ahamed and F. Magoulès. Efficient implementation of Jacobi
iterative method for large sparse linear systems on graphic processing
units. The Journal of Supercomputing, 73(8):3411-3432, 2017.

[10] A.-K. Cheik Ahamed and F. Magoulès. Conjugate gradient method with
graphics processing unit acceleration: CUDA vs OpenCL. Advances in
Engineering Software, 111:32-42, 2017.

[11] F. Magoulès, A.-K. Cheik Ahamed, and A. Suzuki. Green computing
on graphics processing units. Concurrency and Computation: Practice and
Experience, 28(16):4305-4325, 2016.

[12] F. Magoulès and A.-K. Cheik Ahamed. Alinea: An advanced linear
algebra library for massively parallel computations on graphics processing
units. International Journal of High Performance Computing Applications,
29(3):284-310, 2015.

[13] F. Magoulès, A.-K. Cheik Ahamed, and R. Putanowicz. Optimized
Schwarz method without overlap for the gravitational potential equation
on cluster of graphics processing unit. International Journal of Computer
Mathematics, 93(6):955-980, 2016.

[14] F. Magoulès, A.-K. Cheik Ahamed, and R. Putanowicz. Auto-tuned
Krylov methods on cluster of graphics processing unit. International
Journal of Computer Mathematics, 92(6):1222-1250, 2015.

[15] J. Blechschmidt and O.G. Ernst. Three Ways to Solve Partial Differential
Equations with Neural Networks - A Review. GAMM-Mitteilungen, 44:2
(e202100006), 2021.

[16] J. Berg and K. Nystrom. A unified deep artificial neural network
approach to partial differentiate equations in complex geometries. Neu-
rocomputing, 317 (28-41), 2019.

[17] I.E. Lagaris, A. Likas, and D.I. Fotiadis. Artificial Neural Networks for
Solving Ordinary and Partial Differential Equations. IEEE Transactions
on Neural Networks, volume 9, number 5 (987-1000), 1997.

[18] K. Rudd and S. Ferrari. A constrained integration (CINT) approach
to solving partial differential equations using artificial neural networks.
Neurocomputing, 155 (277-285), 2015.

[19] M. Raissi, P. Perdikaris, and G. Em Karniadakis. Physics Informed Deep
Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential
Equations. Journal of Computational Physics, 378 (686-707), 2019.

[20] D. Hendrycks, K. Gimpel. Gaussian Error Linear Units (GELUs). arXiv
e-prints, arXiv:1606.08415, 2018.

118

