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Abstract—High accuracy positioning is an important 
challenge for robots in large scale environment. In order to 
reduce the localization errors in the environments, an 
efficient Normal Distributions Transform (NDT) localization 
method with multi-sensor fusion data fusion, namely FPCR-
NDT-localization, is proposed. Firstly, the laser point cloud 
is pre-processed to remove the ground point cloud and the 
laser feature point cloud is extracted to reduce the laser 
point cloud alignment. Secondly, the inertial measurement 
unit pre-integration results are used to estimate the LIDAR
inter-frame state transfer volume, and the point cloud 
alignment efficiency is accelerated by the feature point-based 
FPCR-NDT alignment method. Finally, the IMU pre-
integration results and the LIDAR inter-frame alignment 
are fused to estimate the robot pose in the global map. In the 
experiments, the localization performance of HDL-
localization, NDT-localization and FPCR-NDT-localization 
systems are tested using MulRan dataset. The results show 
that FPCR-NDT-localization has higher localization 
accuracy in different scenes and higher real-time 
performance compared to the original algorithm.

Keyword—Mobile Robot; Normal Distribution 
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I. INTRODUCTION 

Autonomous navigation is one of the basic tasks of 
mobile robots[1]. In order to meet the challenges of large 
outdoor scene environment range and complex 
environmental features, it is necessary to improve the 
positioning accuracy and real-time performance in the 
process of navigation in large outdoor scenes. The 
positioning and navigation solutions in large scenarios 
mainly face the following problems. Firstly, the 
environment range is large and the accuracy of inter-frame 
pose estimation is insufficient, which leads to the 
accumulation of errors during the movement. Secondly, 
the real-time pose estimation during high-speed movement 
is insufficient, which leads to the decrease of positioning 
accuracy. Thirdly, the deflection angle of the robot is large 
at adjacent moments during the movement, which makes 
the existing inter-frame laser point cloud matching 
technology unable to be aligned.  

II. RELATED WORK

Various solutions have been proposed to achieve 
localization targets and improve localization accuracy of 
mobile robots in large scenarios[2-5].The paper[4] 
proposes a positioning system based on the fusion of 
GNSS, LIDAR(Light Detection and Ranging), and 
IMU(Inertial Measurement Unit), which uses LIDAR
intensity and height information to improve the accuracy 
and robustness of the positioning system. In this system 

data fusion framework Import real-time laser odometer, 
and use the error state Kalman filter to fuse the positioning 
results of different sensors. Later, the paper [5] improved 
the data fusion framework of [4] by introducing a factor 
graph optimization based approach and also adding a scene 
change detection component. This method makes better 
use of multi-sensor data, however, it relies too much on the 
smoothness of the sensor acquisition data. 

LIDAR-based localization technology mainly realizes 
localization through inter-frame matching of laser point 
cloud data and local map matching[6-7]. During robotic 
LIDAR movement, point cloud matching techniques are 
used to determine the relative transformation relationship 
between two frames of the point cloud, which helps in 
robot odometry estimation in unknown environments[8]. 
Moreover, precise transformation parameters can 
determine the change in attitude between two moments [9]. 
The NDT  algorithm based on the local alignment method 
treats the point cloud as a set of Gaussian distributions, 
which is applied to a statistical model of 3D points, and 
determines the matching parameters between the point 
clouds using standard optimization methods[10]. Peter et 
al. first used the point cloud of the current scan frame to 
construct a normal distribution of 2D variables for 2D data 
alignment[11]. Magnusson et al. applied this method to the
scanning alignment process of 3D LIDAR data [12]. In 
large scale outdoor environment, the number of point 
clouds is huge and the environment is variable, so the 
efficiency and accuracy of point cloud alignment are 
reduced, to solve such problems, the feature-based laser 
point cloud alignment method is proposed[13]. This 
method of quickly aligning two frames of point clouds by 
features has efficient feature extraction performance and is 
suitable for large-scale outdoor scene feature extraction. 

For application areas such as outdoor laser point cloud 
alignment and robot localization in large scale 
environment, the research of NDT matching technology 
based on effective point cloud feature extraction method is 
still meaningful. Based on the shortcomings of existing 
positioning systems applied to outdoor large-scale 
environments, the following work is made in this paper. (1) 
Reducing the amount of laser point cloud alignment and 
improving the computational efficiency by ground point 
filtering of the original laser point cloud.(2) Propose a 
Feature point cloud registration NDT algorithm, FPCR-
NDT, for large-area scenes based on the original NDT 
method and the study of feature extraction-based LIDAR
point cloud alignment.(3) Propose a lightweight multi-
sensor data fusion localization system that fuses IMU and 
laser odometer sensor information and incorporates a local 
point cloud map alignment step to achieve high accuracy 
localization.
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III. POSITIONING SYSTEM FRAMEWORK

The corresponding schematic diagram of the 
positioning system is shown in Fig. 1. Firstly, in the laser 
point cloud pre-processing stage, non-ground point clouds 
are segmented to improve subsequent alignment efficiency 
by filtering ground point cloud information for concise 
processing; then, the point cloud is roughness classified 
and the planar feature points are extracted from it for 
subsequent alignment; meanwhile, the IMU odometry 
information is pre-integrated to predict the position 
transformation within two frames; in the measurement 
update stage, the IMU predicted position is used as the 
iterative initial value for the laser odometry. In the 
measurement update stage, the IMU predicted pose is used 
as the iterative initial value for the inter-frame NDT 
iterative alignment of the laser odometry; finally, the point 
cloud pose derived from the laser odometry is aligned with 
the local point cloud map to update the robot's own pose 
and achieve positioning.

Figure 1. Schematic diagram of IMU fusion localization system based 
on FPCR-NDT matching algorithm

IV. 3D POINT CLOUD MAP POSITIONING SYSTEM

A. Ground Point cloud Segmentation
In the point cloud obtained by LIDAR scanning, 

because the ground point cloud data contains few effective 
features and will have certain influence on the subsequent 
classification and recognition of obstacles, and a large 
amount of redundant data on the ground will reduce the 
operation efficiency of the matching algorithm, so it is 
necessary to filter the ground part of the point cloud in the 
pre-processing stage of the point cloud information. In 
order to filter out the ground points in the point cloud, a 
fast ground segmentation method is used to segment the 
ground point cloud information. The filtered ground point 
cloud can effectively reduce data redundancy, reduce 
memory consumption. 
B. Problem Description

During the robot movement, the laser odometer 
converts the position of the two point clouds by matching 
the point clouds, and the position transformation matrix of 
the robot during the acquisition time of the two point 
clouds is derived. Define the point cloud as the set P={pi

R3|i=1,2…,n}, where pi consists of three coordinate 
components, pi={pi

x, pi
y, pi

z}. In the three-dimensional 
space, six-dimensional vectors are defined to encode the 

the robot state 
variable X is defined. 
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Using the Euclidean sequence z-y-x, the three-
dimensional transformation function Trans( ) applying the 
transformation parameter is defined in (2), where the 
transformation parameter consists of the rotation 
parameter R and the translation parameter T. 
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Where R is the rotation matrix when rotating around 
the x-axis at angle and T=[tx, ty, tz]T is the translation 
vector between the origin of the two coordinate systems. In 
this paper, the current point cloud data to be aligned is 
defined as the scan frame and the completed aligned point 
cloud data is defined as the reference frame.

C. Feature Point Extraction
In order to improve the alignment accuracy and real-

time performance, the initial point cloud is classified and 
features are extracted to improve the efficiency of 
subsequent alignment, and the schematic diagram is shown 
in Figure 2. gggg

  
(a) Original Point Cloud          (b) Feature point extraction

Figure 2. Extraction of feature points from the original point cloud 
The feature points are extracted for the point cloud in 

Fig. (2)a using a planar feature detection based approach, 
so that M is taken as the point set of consecutive points xi
in the same line, where xi is at the center of M, as shown in 
Fig. 3.

The roughness r of each point is calculated in (3), 
where |M| is the number of point clouds in the set, and in 
this paper |M|=15. X(k,j) is the coordinates of the adjacent 
points to the left and right of point xi. 

( , ) ( , )
,( , )

1 || ( ) ||
| | || ||

L L
k i k jL

j M j ik i

r X X
M X

(3) 

Set the roughness threshold as R, traverse all xi to 
consider the points with roughness less than R as feature 
points, as shown in Fig. (2)b. 

xi

M

Figure 3. Single line continuous point cloud distribution

D. FPCR-NDT Point Cloud Matching Algorithm
Point cloud alignment is performed for the scanned 

frames and reference frames for which feature point 
extraction has been completed, as follows. 
Step1. For the current scanned frame feature point cloud 
set PS and reference frame point cloud set PR, the feature 
point clouds of scanned frame and reference frame are 
divided into two sets of raster CS, CR, PS={CS

1 , CS
2 ,…, C

S
n } PR={CR 

1 , CR 
2 ,…, CR 

n },where n is the number of feature 
point cloud raster cells, and the feature points contained in 

62



the raster cells generate a Gaussian distribution N(us
i ,

s
i ) ,N(uR 

i , R 
i ). 

Step2. Initialize the positional transformation parameter 
=[tx, ty, tz, , ,  ]. 

Step3. The alignment of the raster distribution to the 
inter-distribution is performed, and the inter-distribution 
alignment performance is judged by the following 
calculation results.

2
2

1
( )

n
S R
i i

i

L X X (4) 

( , )S R
ij i jTrans uu (5) 

), 
which is used to calculate the alignment error of this 
parameter applied to the two-frame point cloud, as in (6).
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Step4. The alignment error function obtained in the 
previous step is optimized and its gradient vector is solved 
by components. Let and be one of the components of 
the six-dimensional vector , respectively[14]. The partial 
derivative of this component in is solved as in (7).

1( ) ( ) exp( )
2 2aj

T
ij ijT T

ij ij a ij

B
B BZ B     (7) 

where B, j , and Z are the calculated process variables 
as shown in (8), (9), and (10).
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Solve the alignment error function for component 
and calculate the Hessian matrix. 
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where Hab, Zab, and q are process variables as shown in 
(12), (13), and (14). 

2
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For each component , of the six-dimensional 
transformation parameter , the first-order derivative and 
second-order derivative of the error function about the 
components are solved, and the partial derivative 
expression about the variables is derived, and the 
alignment error function is minimized and solved, as 
shown in (15) and (16) to obtain the final transformation 
parameter * of the two-frame point cloud, at which point 
the robot carrier state variable Xscan be derived as follows.

)* arg m (in (15)
( *, )scan refTransX X (16) 

E. LIDAR/IMU Combined Positioning System  
The combined positioning method consists of the 

following steps: first, the IMU integration information is 
used to derive the inter-frame pose offset of the robot for 
coarse positioning of the robot, and this pose is imported 
into the FPCR-NDT matching as the initial value for the 
iterative alignment of the reference frame and the scan 
frame. After the two frames are aligned, the observed 
scanned frames are finely aligned with the local point 
cloud map, and the robot's pose in the map is obtained by 
using its state update. The state transfer process is defined 
as a discrete-time process model, and the FPCR-NDT 
point cloud alignment and local map matching are 
incorporated into the state correction process. 

In the attitude prediction stage, the robot attitude 
information is derived from the IMU to provide initial 
values of the attitude, LIDAR point cloud alignment and 
other observation data. Set robot state Xt =[xt,yt,zt, t, t, t] at 
moment t during the time period in which the two state 
nodes (Lt Lt+1) are located , the local map alignment step 
as a positional correction by the relative positional inferred
transformation matrix TIMU of IMU with the alignment 
relationship Tpoint2point of the point cloud of the two 
preceding and following frames. Let the alignment 
relationship between the current frame and the local map 
be Tpoint2map , and derive the robot pose prediction value 
X't+1 with the updated value Xt+1 at moment t+1. 

1 2
' ( ( ))t point point IMU tT TX X (17) 

2
'

+1 +1( )t point map tX T X (18) 

V. EXPERIMENT AND ANALYSIS
In order to validate the localization performance of the 

proposed localization method, experiments are conducted 
to compare with existing open source solutions HDL-
localization[15] with NDT-localization. In this paper, we 
use the mulran dataset to evaluate the localization accuracy, 
trajectory and other metrics of our method.
A. Experimental Settings

First, SC-LeGO-LOAM[16], an open source 3D laser 
slam solution with excellent performance at present, is 
used to generate a high-precision point cloud map. Then, 
the point cloud map is imported for initialization, and the 
robot conducts navigation experiments in this point cloud 
map. 

Fig. 4 shows the DCC scene in the dataset. From the 
figure, it can be obtained that the current frame range of 
the point cloud is larger and can match with the local point 
cloud map with higher accuracy.

  
(a) DCC point cloud map                (b) Local positioning

Figure 4. DCC Scene (a) shows the point cloud map of the site, and Fig. 
(b) shows the effect of the robot driving in the point cloud map

B. Trajectory Error Analysis
To test the performance of the FPCR-NDT positioning 

system, the trajectories of the above positioning system 
traveling in the dataset DCC scenario were derived using 
the trajectory evaluation tool evo, as shown in Figure 5. 
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From the partially enlarged area of Fig. 5, it can be 
concluded that among the three sets of trajectories, the 
trajectories of the FPCR-NDT positioning system are 
closer to the real motion trajectories, and most of the 
positioning achieves decimeter-level accuracy compared 
with the real trajectories, and there is no obvious 
cumulative error during the driving process.

Figure 5. Comparison of three positioning methods in DCC scene 
motion trajectory

Figure 6 shows the comparison of the absolute 
positional error between the motion trajectory and the real 
trajectory obtained by the above three positioning systems 
in the DCC scenario. Table 1 shows the absolute error 
information for the DCC, KAIST and Riverside scenes in
the Mulran dataset. In the moving process, HDL-
localization and NDT-localization localization systems, 
which only rely on point cloud alignment for pose 
estimation, can hardly guarantee that the error is within a 
small range, and the FPCR-NDT localization system 
provides better pose estimation for the robot through IMU 
at the front end, which provides iterative initial values for 
subsequent alignment while ensuring computational 
efficiency and avoiding The iterative process falls into the 
local optimal situation, which is reflected in the higher 
accuracy and smaller root-mean-square error and standard 
deviation of the trajectory of the LIDAR and IMU data 
fusion complementary positioning method.

(a) NDT                           (b) HDL                  (c) FPCR-NDT

Figure 6. Absolute error of trajectory positioning of DCC scenes

VI. CONCLUSION
In order to improve the positioning accuracy for

moving robots in large scale and diverse environments, a
real-time localization system based on multi-sensor 
combination localization with feature point cloud 
alignment is proposed. In the system, the laser point cloud 
is pre-processed to remove the ground point cloud and the
laser feature point cloud is extracted to reduce the laser 
point cloud alignment. And the inertial measurement unit 
pre-integration results are used to estimate the LIDAR
inter-frame state transfer volume. Moreover, the LIDAR
inter-frame alignment and the IMU pre-integration results 
are fused to estimate the robot pose in the global map. The 
experiments results show that FPCR-NDT-localization has 

higher accuracy and computing efficiency, compared to
the original positioning system. 

TABLE I. ABSOLUTE ERROR COMPARISON

Scene method mean median rmse std

DCC
NDT 12.7691 11.4212 14.343 6.5164
HDL 4.262 3.8684 5.092 2.7871

FPCR-NDT 0.565 0.4475 0.949 0.7763

KAIST
NDT 15.195 13.6896 11.337 8.7607
HDL 6.214 5.5518 4.366 3.7627

FPCR-NDT 0.832 0.7710 1.189 1.5937

Riverside
NDT 16.972 16.7324 15.335 13.109
HDL 7.185 8.6252 6.377 5.8187

FPCR-NDT 1.267 0.9018 1.792 1.8676
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