2021 20th International Symposium on Distributed Computing and Applications for Business Engineering and
Science (DCABES)

Improve the Performance of LSM-Tree based on
Key-Value via Multithreading

Yuan Gao'?*** | Ping Xie'">>**, Wendi Hua'>** Meng Lv'?34, Jiating Lu’
1. College of Computer of Qinghai Normal University, Xining 810016, P. R. China
2. The State Key Laboratory of Tibetan Intelligent Information Processing and Application, Xining 810016, P. R. China
3. Key Laboratory of Internet of Things of Qinghai Province, Xining 810016, P. R. China
4. Academy of Plateau Science and Sustainability, Xining 810016, P. R. China
5. School of Physical and Electrical Engineering, Qinghai Normal University, Xining 810016, P. R. China
*Corresponding author: xieping@qhnu.edu.cn

Abstract—In the era of big data, key-value storage systems
based on Log-Structure Merge tree (LSM-tree) are widely
used in numerous industries. LSM-Tree is divided into two
parts, one part is in the memory and the other part is on the
hard disk. When writing data, first write to the memory, when
the Immutable Memtable in the memory is full of data, then
write to the disk to output a Sorted String Table (SSTable)
file. However, the use of writing data from memory to disk is
single-threaded. When the Immutable Memtable writes data
to the disk, it will block other threads. This article uses
multiple Immutable Memtables and multi-threaded writing
to solve the single-thread blocking problem. By running the
benchmarks of LevelDB to analyze the experiment, the
experimental results indicate a higher improvement.

Keywords—Key-Value store, Multi-Threading, Write
performance, Read performance , LSM-Tree, Immutable
Memtable

L INTRODUCTION

With the advent of big data, data is the most important
asset of data centers and even enterprises. In the data society,
data has the dual role of basic strategic resources and key
production factors. As the core part and underlying base of
the information system, the construction and use of storage
systems are directly related to the storage, use, and mining
of data, which is the core asset of the enterprise. Currently,
the challenges faced by storage systems are as follows. First,
the amount of data has exploded. With the continuous
development of the mobile Internet, the scale of enterprise
data has shown explosive growth. Research shows that in
2018, China's new data will be 7.6ZB; in 2025, China's new
data will reach 48.6ZB, with an average annual growth rate
of 30%. Second, the business is responsible for presenting
dynamic changes. A load of modern service platforms is
non-linear and dynamically changing, especially for
Internet-based services, and sudden changes in service load
may occur at any time. Taking Double Eleven in 2020 as an
example, the real-time transaction volume of online
shopping malls exceeded 372.3 billion yuan. The peak order
creation is 583,000 transactions per second, which is 1457
times that of the first Double Eleven event in 2009.

Currently, key-value storage has become an important
part of various data-intensive storage applications.
Compared with traditional storage structures, non-
traditional storage has many advantages, including
scalability, ease of use, and higher throughput. Non-
relational databases are broadly divided into four categories
based on data size: key-value, wide-column, document, and
graph. Typical applications of key-value storage include
graph databases, task queues, stream processing engines,

2473-3636/21/$31.00 ©2021 |IEEE
DOI 10.1109/DCABES52998.2021.00046

155

NoSQL storage, and distributed databases. Increasing
demand is higher reading and writing performance.
According to the current situation, workloads increasingly
tend to be key-value storage. Therefore, it is necessary to
optimize key-value storage.

The current mainstream key-value storage structure is
LSM-Treel!l, which is a hard disk-based data structure.
Compared with B-Tree, it can significantly reduce the
overhead of the hard disk and provide a longer time for high-
speed insertion. LSM-Tree divides the storage structure into
two parts, one part in the memory and the other part in the
hard disk, which can make good use of the high-speed
performance of the memory and the large capacity of the
disk. Using such a model can trade high-speed writing
performance at the expense of small read performance. The
data in memory is stored in the Memtable and immutable
Memtable in order. In the disk, the structure for storing data
is SSTable. The memory and data in SSTable are ordered
and unique. The one exception is data in disk tier 0. Because
all memory data needs to be received at a high speed, the
data at level 0 is repeated. The data storage process of LSM-
Tree is generally written to the Memtable first, then to the
immutable Memtable when it is full, and then flush to level
0 of the disk when it is full. After that, after level O is full, it
is compressed and merged to level 1, and so on.

Many articles improve performance by optimizing the
data structure of LSM-Tree. Optimize the SkipList memory
data structure and optimize the disk storage structure
SSTable to improve writing and reading performance. This
paper analyzes the LSM-Tree writing process and analyzes
each module one by one to find the optimization points.
Through analysis, it is found that when the immutable
Memtable is flushing data to the disk, LSM-Tree uses a
single thread for flushing. When the immutable Memtable
is inputting data, it will block the Memtable from writing
data to the Immutable Memtable, and by reading the paper
SIKL, it is found that LSM-Tree will trigger the long tail
delay in three places, of which the immutable Memtable
flush to the disk is a very important trigger point. And get
inspiration from the article Multiple Immutable Memtables,
which increases efficiency by increasing the number of
immutable Memtables and writing multiple immutable
Memtables to disk at the same time through multithreading.

1L

A. Concept of LSM-Tree

Fig 1 shows the basic structure of the original LSM-Tree.
LSM-Tree is divided into two parts, one part in the memory
and the other part in the hard disk. The part on the hard disk

BACKGROUD

is divided into multiple parts, each part is called a level,
from top to bottom is level 0 to level n. When writing data,

first write it to C,, of the memory. When C is full, € will

flush the data to the disk, and € will flush the data to cl.
When the data of cl is full, it will be compressed and
merged with C,, And so on, until the C, layer. As the

number of layers increases, the capacity of each layer will
increase exponentially. Because the data is continuously
compressed downwards, the new data is in the lower layer
and the old data is in the higher layer.

Fig 2 shows the basic structure of LevelDBP!. LevelDB
optimizes the structure of LSM-Tree. The memory c0 is
divided into two parts, one part is Memtable, and the other
part is immutable Memtable. Created a new data structure
named SSTable, each layer contains many SSTables. For
some auxiliary functions, log files, manifest files, and
current files are introduced. The following briefly
introduces the function of each part.

Memtable: Memory data structure, SkipList
implementation, new data will be written here first.

Log file: Before writing to Memtable, the log file will
be written first, and the log will be written sequentially by
append. Another function of logs is that they can be used to
restore data after the machine is down.

Immutable Memtable: After reaching the upper limit of
the capacity set by the Memtable file, the Memtable will be
converted to an immutable Memtable. This is to prepare for
the conversion to an SSTable file. The immutable Memtable
is not allowed to be modified. After the immutable
Memtable is written, a new Memtable will be generated.

SSTable file: Disk data storage file. From level 0 to level
n of the disk, each layer contains multiple SSTable files. As
the number of layers increases, the total amount of SSTable
contained in each layer increases exponentially, and the data
in the SSTable is ordered . Among them, the SSTable file in
level 0 is generated by directly dumping the immutable
Memtable of the memory, and the other level SSTable files
are generated by merging the files of the upper layer and the
files of this layer. The SSTable files are written and
generated sequentially during the merging process. Later, it
can only be deleted in subsequent merges without any
modification operations.

Manifest file: The manifest file records the distribution
of SSTable files at different levels, the maximum and
minimum keys of a single SSTable file, and other meta-
information required by LevelDB.

Current file: When LevelDB starts, the first task is to
find the current manifest file, and there will be multiple
manifest files, the current file will record the file name of
the current manifest, making it easy to find.

After introducing each component of LevelDB, let's
briefly introduce the reading process and writing process.
Writing process: The written operation of LevelDB includes
setting key-value and deleting key. It should be pointed out
that these two cases are the same in the processing of
LevelDB. The deleted operation is actually to insert a piece
of data marked as deleted into LevelDB. The external write
interfaces provided by LevelDB include put, delete and
write. Among them, writing needs a WriteBatch as a
parameter, and put and delete first encapsulate the current

156

operation into a WriteBatch object and call the write
interface. A WriteBatch is a collection of a batch of write
operations, and its significance is to improve writing
efficiency and provide atomicity of all writes in the batch.
In the write function, a writer is first encapsulated with the
current WriteBatch, which represents a complete writing
request. The LevelDB lock ensures that only one writer can
work at the same time. Other writers suspend and wait until
the previous writer finishes executing and wakes up.

Figure 1: The original structure of LSM-Tree

The SSTable file on the disk is also very important. The
keys in the SSTable file are ordered, and the key value in
the file is the smallest. This is the case for each level of
SSTable. However, the SSTable at level 0 is different from
the SSTable at other levels and the key ranges of the two
SSTable files at level 0 overlap. A certain file in SSTable
belongs to a specific level, and the keys are in order, so it is
very important to record the smallest key and the largest key.
The manifest file is used to store this information. It records
the management information of each file in SSTable, Such
as which level it belongs to, what is the file name, and what
is the minimum and maximum key.

Reading process: First, generate the key used for the
internal query, which is generated by splicing the sequence
with the UserKey requested by the user. The sequence can
be provided by the user or use the current latest sequence,
and LevelDB can ensure that only the writes before this
sequence are queried. Using the generated key, try to read
from the Memtable, immutable Memtable, and SSTable
files in turn until it is found. Finding from the SSTable file
needs to try to read in each layer in turn, because the key

Level O SSTables

Level 1 SSTables

Level N SSTables

Current

Figure 2:The structure of LevelDB

interval of each file recorded in the manifest can quickly
know whether a key is in the file. Since levelO files are
directly dumped from immutable Memtable, they will
inevitably overlap with each other, so each file needs to be
searched once. For other levels, because the merging
process ensures that they do not overlap and are in order, the
binary search method provides better quality efficiency.

B. Related Work

By studying the overall structure and read-write process
of LSM-Tree, the current article is working on the following
six aspects, such as: write amplification, merge operation,
hardware, special workloads, Auto Turning, and Secondary
Indexing. The write amplification problem is the root
problem of LSM-Tree. There are many articles on
optimizing this problem, such as: LWC-tree!®], PebblesDBI?,
dCompaction™, SifrDBP!, TRIAD!!, etc. Changing the
compression method of each layer of SSTable on the disk
can also improve the efficiency of LSM-Tree. There are the
following research results: bLSMI!%. At present, the
emergence of new storage media also provides a good
opportunity for the application of LSM-Tree. The following
articles are optimized under the new storage media:
WiscKey!!!], etc. In the new application environment, its
special load has also changed. Like some extreme loads, one
hundred thousand or one million visits will be generated
within a few milliseconds. In response to these extreme
loads, the following results have been produced: SHmDB!'2,
etc. The remaining two aspects are relatively novel, so we
won't repeat them here.

I

Here we introduce Multithreading. This idea comes
from an article about Multiple Immutable Memtables!®). The
article mentioned that since there is only one immutable
Memtable structure in memory when the immutable
Memtable flushes data to the disk, it will block the thread
that the Memtable writes to it. If multiple immutable
Memtables are created, this kind of problem will not occur,
and the blockage caused by a single module is well solved
here. Through our research, we found that when the

METHODS

157

immutable Memtable is filled and then flushed to the disk,
it is a thread that is responsible for it. This results in the fact
that even if there are more immutable Memtables, it can
only queue up for flush data. We will provide a new one
here. The idea is to open multiple threads to concurrently
flush data so that it will be written to the disk at a high speed.

Fig 3 shows the most primitive state of LevelDB. There
is only one Memtable and immutable Memtable component
in memory, and the immutable Memtable is single-threaded
when flushing data to the disk. Although this method can
ensure data consistency, it also sacrifices More performance,
and it is not friendly to the current multi-core CPU multi-
threading, cannot play its full performance.

Memory

Memtable

hd

Immutable
Memtable

Figure 3:LevelDB Single Thread Mode

Fig 4 shows the optimization scheme of multiple
immutable Memtable components and multithreading. It
can be seen that multiple immutable Memtables can better
optimize thread blocking, and multi-threaded flushing to
disk can also optimize the long-tail delay problem.

Memtable Memtable

Figure 4:Level DB Multithread mode

Iv.

Experiment Setup. We conduct experiments on one
machine running the Ubuntu 20.04 final with kernel 5.11.0.

The machine includes two-sockets Intel® X eon® Silver
4210(40 cores, 2.20GHz, 20MB L2 cache, 27.5MB L3
cache). The machine has 126GB of DRAM and nineteen
600GB disks. The file system used is ext4.

We tested fillseq, fillrandom, readseq, readreverse,
overwrite these indicators respectively. The key size we use
is 16 bytes, the value size is 100 bytes, and the workloads
used are 1,000 and 10,000 respectively.

EVALUATION

Results with benchmarks

80 5 867.8

2 54.7°7-

§ 60

S 40 26.526.631-4

Z 20 . 44 41 45
0 ____ I I R W

readseq readreverse fillseq
mOriginal © M-immu = M-thread

Figure 5:The comparative results of original, M-immu and M-thread
under 1,000 Key/Value Workloads

20 168 17
@ s 14.5 12.9 14.3 7
M
g 10
=
% 5
0 ___ LI
fillrandom readreverse fillseq
mOriginal © M-immu = M-thread

Figure 6:The comparative results of original, M-immu and M-thread
under 10,000 Key/Value Workloads

Fig 5 shows the comparison of the three methods under
1000 key-value workloads. It clearly shows that the multi-
threading method proposed in the article is better than the
original method and the multi-immutable method. In
readseq, readreverse, and fillseq, the improvement is 24%,

158

18%, and 2% respectively compared with the original
method.

Fig 6 shows a comparison of the three methods under
10000 key-value workloads. It clearly shows that the multi-
threading method proposed in the article is better than the
original method and the multi-immutable method. In
fillrandom, readreverse and fillseq, the improvement is 7%,
4%, and 3% respectively compared with the original method.

V. CONCLUSION

In this article, we introduced Multithreading, which is a
new solution to improve reading and writing performance.
It aims to increase the number of threads that interact with
data from the memory to the disk to increase the rate of
writing and reading data. And we have shown good results
in the comprehensive workload experiment, which proves
that this scheme is feasible.

ACKNOWLEDGMENT

This work is supported by The National Natural Science
Foundation of China under Grant No.61762075.1t is also
supported by The Provincial Nature Science Foundation of
Qinghai under Grant No0.2020-ZJ-926. Ping Xie is the
corresponding author of this paper.

REFERENCES

O’Neil, P., Cheng, E., Gawlick, D., & O’Neil, E. (1996). The log-
structured merge-tree (LSM-tree). Acta Informatica, 33(4), 351-385.
LevelDB. 2005. A fast and lightweight key/value database library by
Google. https://github.com/google/Level DB.

Raju, P., Kadekodi, R., Chidambaram, V., & Abraham, I. (2017,
October). Pebblesdb: Building key-value stores using fragmented
log-structured merge trees. In Proceedings of the 26th Symposium
on Operating Systems Principles (pp. 497-514).

Pan, F., Yue, Y., & Xiong, J. (2017). dCompaction: Delayed
compaction for the LSM-tree. International Journal of Parallel
Programming, 45(6), 1310-1325.

Mei, F., Cao, Q., Jiang, H., & Li, J. (2018, October). SifrDB: A
unified solution for write-optimized key-value stores in large
datacenter. In Proceedings of the ACM Symposium on Cloud
Computing (pp. 477-489)

Balmau, O., Didona, D., Guerraoui, R., Zwaenepoel, W., Yuan, H.,
Arora, A., ... & Konka, P. (2017). {TRIAD}: Creating Synergies
Between Memory, Disk and Log in Log Structured Key-Value
Stores. In 2017 {USENIX} Annual Technical Conference
({USENIX} {ATC} 17) (pp. 363-375)

Balmau, O., Dinu, F., Zwaenepoel, W., Gupta, K,
Chandhiramoorthi, R., & Didona, D. (2019). {SILK}: Preventing
Latency Spikes in Log-Structured Merge Key-Value Stores. In 2019
{USENIX} Annual Technical Conference ({USENIX}{ATC} 19)
(pp- 753-766).

Yao, T., Wan, J., Huang, P., He, X., Wu, F., & Xie, C. (2017).
Building efficient key-value stores via a lightweight compaction
tree. ACM Transactions on Storage (TOS), 13(4), 1-28.

Gao, Y., Xie, P., Hua, W., Lv, M., & Li, P. (2021, August). Improve
the Performance of LSM-Tree Based Key-Value via Multiple
Immutable MemTables. In 2021 IEEE 12th International
Conference on Software Engineering and Service Science (ICSESS)
(pp. 223-227). IEEE.

Sears, R., & Ramakrishnan, R. (2012, May). bLSM: a general
purpose log structured merge tree. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data (pp.
217-228).

Lu, L., Pillai, T. S., Gopalakrishnan, H., Arpaci-Dusseau, A. C., &
Arpaci-Dusseau, R. H. (2017). Wisckey: Separating keys from
values in ssd-conscious storage. ACM Transactions on Storage
(TOS), 13(1), 1-28.

Ren, K., Zheng, Q., Arulraj, J., & Gibson, G. (2017). SlimDB: A
space-efficient key-value storage engine for semi-sorted data.
Proceedings of the VLDB Endowment, 10(13), 2037-2048.

(1]
(2]
(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

