
A Power-on Hardware Self-test Framework in Web-based OS

Hao Xu*, Long Peng*, Jun Ma, Shasha Li, Jie Yu+, Qingbo Wu

College of Computer, National University of Defense Technology, 410073, China

Abstract—The hardware status of mobile devices is crucial
to users. If hardware fails and running application cannot
perceive it, it may cause application to process wrong data
and eventually make the system fall into a logically chaotic
state, which may lead to severe consequences. Web-based Op-
erating System (OS) is a mobile OS on which the application
is developed by Web, but there is no mechanism for users to
get hardware status in the OS. To address the above issue, we
propose a hardware power-on self-test framework to deliver
hardware status of Web-based OS to users. We design the
framework by deep stacking three layers from bottom to
top: (i) infrastructure layer, in which we register a new driver
named self-test to collect the information about the hardware
status from other drivers. (ii) web engine layer, in which we
implement a Web API named CallCLibrary to read the status
from infrastructure layer and pass it to web application;
(iii) web application layer, which receives status information
from lower layer and displays it to users. We implement the
framework on a device equipped with Firefox OS, which is
representative of Web-based OS and conduct experiments to
verify the self-test framework and test the performance of
CallCLibrary. Experimental results show that the proposed
framework successfully captures various failure statuses of
hardware and CallCLibrary outperforms native Web APIs
of Web-based OS and JNI of Android.

Keywords-Web-based OS; hardware self-test; device
drivers; Web API;

I. INTRODUCTION

The mobile devices are widespread nowadays, which

puts forward an urgent requirements for mobile operating

system (OS). The Web-based OS is a type of mobile OS

and all applications in this OS are developed on Web

technologies. Prevalent Web-based OSs include Firefox

OS [1] [2] , Chrome OS [3] and Kai OS. Although

Firefox OS has been stopped by Mozilla in 2016, it has

not disappeared in the market nowadays. Kai OS, based

on Firefox OS, is currently very popular in India. Data

reports show that as early as the first quarter of 2018, Kai

OS surpassed iOS to become the second largest mobile

operating system in India, second only to Android. In

2019, the number of users of Kai OS has exceeded 100

million, making it the third largest operating system in

the world. Web-based OSs are generally composed of

three layers, i.e. application, web engine and infrastructure

layers [4], as shown in Fig. 1.

• Application layer, which consists of web applica-

tions that are written in HTML5, CSS and JavaScript,

is the user interface layer and provides human-

machine interactions. This layer is also responsible

* indicates equal contribution.
+ corresponding author. E-mail address: yj@nudt.edu.cn

for interacting with lower layers through exposed

APIs.

• Web engine layer is composed of Web APIs [5],

layout engine, JavaScript engine and security module.

Web APIs provide the programmatic access to hard-

ware functionality and expose it to web application.

Layout engine parses the HTML and renders the

content to the screen. JavaScript engine specializes

in processing JavaScript scripts.

• Infrastructure layer is the bottom of Web-based OS,

which serves as a bridge between web engine layer

and the underlying hardware. This layer controls the

underlying hardware and exposes hardware capabili-

ties to Web APIs that are implemented in web engine

layer. This layer contains Linux kernel, device drivers

and HAL (hardware abstract layer).

Infrastructure layer

Web engine layer

Application layer

Web
application

Web
application

...

Web APIs JavaScript
engine

Layout
engine Security

Linux
kernel

Device
drivers

HAL

Web
application

Figure 1: The architecture of Web-based OS.

System stability is an crucial indicator for an operating

system, and whether the hardware works well or not is

an important aspect of it. For instance, if GPS fails and

device user fails perceiving it, the device may be in the

wrong operating state and cause serious consequences,

such as a map navigation system. At present, as far as we

know, prevalent Web-based OS fails to provide hardware

status information to users in the boot stage. To address

above issue, we propose a power-on hardware self-test

framework in Web-based OS, which can deliver hardware

status to users. We implement the framework in three

levels:

(i) In infrastructure layer we register a new driver named

self-test to collect the status of other hardware drivers

in the OS. To build the connection between the self-test

driver and other hardware drivers, we utilize the notify

mechanism in the Linux kernel. After the information

collection, the self-test driver writes the hardware status

into a file in the device.

218

2021 20th International Symposium on Distributed Computing and Applications for Business Engineering and
Science (DCABES)

2473-3636/21/$31.00 ©2021 IEEE
DOI 10.1109/DCABES52998.2021.00061

(ii) In web engine layer we implement a Web API

named CallCLibrary. CallCLibrary provides the web ap-

plication (HTML5) with the ability to invoke native code

such as C/C++. We use CallCLibrary to read the hardware

status file and deliver the message to the web application.

CallCLibrary is implemented complying the rule of Web

API and utilizes the callback Web API to achieve the

message delivery.

(iii) In application layer, we create a web application

and receive the message delivered by CallCLibrary Web

API, then display the message on the login interface in

the boot stage.

To validate the usability of our framework and the

performance of CallCLibrary, we conduct experiments on

a same smart watch device equipped with Firefox OS

and Android respectively. Firstly, we simulate hardware

failure and experimental results show that the proposed

framework could successfully capture it and deliver it to

users. Then we validate the performance of CallCLibrary.

The exiting mechanisms for the application invoking the

native .so library include native Web API of Web-based

OS and JNI (Java Native Interface) [6]of Android, and

we conduct a comparison experiment between them. The

experimental results show that CallCLibrary outperforms

the native Web API and JNI, with the average invocation

time 2.7ms compared to 3.88ms and 3.38ms.

II. BACKGROUND

In this section, we present background knowledge to be

used in the following sections. Firstly, we introduce the

notify mechanism in Linux kernel which is responsible

for the message delivery between different drivers in

our framework. Then we describe the content related to

hardware driver in Linux kernel. Finally, we introduce

Web API which construct the connection between the web

engine layer and the application layer.

A. Notify mechanism

The various subsystems in Linux are independent, but

sometimes a subsystem may be of interest to other sub-

systems. To build the connection between different sub-

systems, the Linux kernel present s the notify mechanism.

The notify mechanism is implemented by a linked

list in the Linux kernel. Each node in the notifica-

tion list is a data structure named notifier_block,

a notifier_block contains a function that is

to be executed when the notifier_block is

matched. For instance, subsystemA uses the func-

tion atomic_notifier_chain _register to reg-

ister a notifier_block in the notify list, when

an event happens in subsystemB and subsystemB

wants to notify subsystemA, the subsystemB in-

vokes the notify_call_chain to traverse all the

notifier_block in notify list and find the registered

notifier_block, then invoke the function in it when

matched.

B. Driver management in Linux kernel

The driver is a bridge between hardware and operating

system [7]. Since Linux 2.6, a set of driver manage-

ment mechanism has been introduced and most drivers in

Linux use this mechanism. Device in Linux is represented

as platform_device and driver is represented as

platform_driver.

There is a Linux kernel at the bottom of Web-based

OS. When the device equipped with Web-based OS power

on, the hardware device and drivers in the system start to

register. Driver would look for the device with the same

name in bus and hardware device does the same. The

probe function in the driver will complete the final job

when driver matches device successfully. And the probe
function would check the registration about the hardware

device, when the hardware device fails, the function would

print error information in the kernel.

While the probe function test hardware in kernel mode

which the user program cannot attach, resulting in users

cannot get the status information about the hardware.

Besides, the probe function test a single hardware driver

and the information about all drivers need to be collected.

C. Web API

Web API is an application programming interface for

Web, which could manipulate the DOM (Document Object

Model) using JavaScript. The DOM is a document model

in the browser and represent the document as a node tree,

each node in the tree represents an element. Web API gen-

erally utilizes JavaScript object as a carrier. For instance,

the Web API document.getElementById(id),

which could get the element corresponding to the id,

depending on the document JavaScript object.

III. POWER-ON SELF-TEST FRAMEWORK

A. Overview

In the boot stage of the device equipped with Web-based

OS, the probe function is invoked to check the respective

driver registration in the Linux kernel. To notify users

about the hardware driver status, there are two works to be

done: i) Collect the device driver status information from

all the hardware drivers. ii) Deliver the status information

to users.

However, it is not easy to accomplish these works. The

device driver program runs in respective subsystem, and

there is no information exchange between various drivers.

On the other hand, device driver program runs in kernel

mode, while the web application program, which is the

interface between users and Web-based OS, runs in user

mode. The bridge between web application and device

drivers is to be built.

To complete the above two works, we implement our

framework in three levels: infrastructure layer, web engine

layer (CallCLibrary Web API) and web application layer,

as shown in Fig. 2. Next, we will give detailed descriptions

of the three components in the framework.

219

Sensor GPS WiFi Bluetooth Battery Charge ...Sensor GPS WiFi Bluetooth Battery Charge ...

Hardware module

Infrastructure layer

Sensor
driver

GPS
driver

WiFi
driver

Bluetooth
driver

Battery
driver

Charge
driver

Self-test driver

r
Self-test node

Application layer

Self-test web application

Sensor
driver

GPS
driver

WiFi
driver

Bluetooth
driver

Battery
driver

Charge
driver

Drivers
being

monitored

Web engine layer

Figure 2: The architecture of the self-test framework.

B. Framework in Infrastructure layer

We register a new driver named self-test in the Linux

kernel to collect information from other hardware divers

through the notify mechanism and create a file to store

the device status information. As a result, the information

about hardware status is aggregated and the program in

user mode could get the information from the device status

file.

1) Register the self-test driver: The

function module_init and module_exit exist in

all the drivers of the Linux. module_init is the entry

of the device driver, and when the device corresponding

to the driver is deleted, the module_exit function will

be executed. We create an entry function of the self-test

driver and invoke the subsys_initcall instead of

module_init to register the entry function, because

the self-test driver needs to be registered before drivers

to be monitored. The entry function contains function

platform _register_driver which is used to

register the self-test driver to bus.

2) Connect with other drivers through notify mecha-
nism: The self-test driver is the crucial driver in the

framework which is responsible for the information dis-

tribution and collection. On the other hand, the driver

to be monitored delivers the hardware status message to

the self-test driver. We implement the connection through

notify mechanism in two aspects: the self-test driver

and the driver being monitored .

Self-test driver. We use the

ATOMIC_NOTIFIER_HEAD to initialize the notify list.

Then we implement a notifer_block that contains

the function check_notifier_call. The function

check_notifier _call identifies the information

delivered from drivers being monitored and set the device

status file. Next we complete the implementation in

the probe function of the self-test driver. We invoke

function atomic_ notifier_chain_register to

register the notifer_block mentioned above into the

notify list.

Drivers being monitored. We encapsulate the func-

tion notify_call_chain into a function notify_
check_notifier and add the function to the proper

location of the probe function in the driver code. The

function notify_check_notifier delivers “SUC-

CESS” or “FAIL” message to the notify list. For instance,

in the probe function of compass driver file, we add

the function notify_check_notifier as shown in

Fig. 3.

kernel/linux-3.10.y/drivers/comip/sensor/akm09911.c

1467.int akm_compass_probe(struct i2c_client *client, const struct i2c_device_id *id)

1468.{

…

1479. if (!pdata) {

1480. dev_err(&client->dev, "Failed to allocate memory\n");

1481. printk("9999===akm_compass_probe allocate memory failed \n");

1482. notify_check_notifier(CHECK_NOTIFY_COMPASS_FAIL);

1483. return -ENOMEM;

1484. }

…

1486. err = akm_parse_dt(&client->dev, pdata);

1487. if (err) {

1488. dev_err(&client->dev, "DT parsing failed\n");

1489. printk("9999===akm_compass_probe DT parsing failed \n");

1490. notify_check_notifier(CHECK_NOTIFY_COMPASS_FAIL);

1491. return err;

1492. }

…

1635. dev_info(&client->dev, "successfully probed.");

1636. notify_check_notifier(CHECK_NOTIFY_COMPASS_SUCCESS);

1637. return 0;

Figure 3: The code snippet added in the sensor driver.

When the notify_call_chain in the

notify_check_notifier is invoked, the notify

list will find the notify_block registered before and

execute the function (i.e. check_notifier_call) in

it to update the hardware status file.

C. Framework in web engine layer (CallCLibrary Web
API)

In Web-based OS, web application is the interface

between users and operating system, so the information

in hardware status file need to be delivered to web appli-

cation. We propose the CallCLibrary Web API to achieve

that goal.

In this section, firstly we introduce the CallCLibrary

Web API, which provide the ability to invoke the native .so

library for web application. Next we present the specific

application of the CallCLibrary on self-test framework.

CallCLibrary is a type of Web API, so we construct

it complying the rule of Web API. The overall design

of the CallCLibrary Web API is shown in Fig. 4. The

implementation is divided into three parts: application

layer, web engine layer and plugin (i.e. .so library).

1) CallCLibrary in application layer: In application

layer, i.e., the web application, we construct a CallCLi-

brary JavaScript object. Three functions of CallCLibrary

are Init, Addlistener and Exec. Init is used to

220

Web engine layerg y
CallCLibrary Web API

CallCLibrary (.cpp and .h)

Application layer

Web application

HTML

CSS

JavaScript

<html>
...
var Caller = new CallCLibrary();
Caller.init(helloworld , PATH/helloworld.so);
Caller.addListener(Libcallback);
Caller.exec(helloworld , start , 1);

function Libcallback(callbackId, isSuccessed, msg)
{
document.getElementById('id').innerHTML += msg;
}
...
</html>

init addlistenerexec

CallCLibrary.webdil

Plugin Helloworld.soexecute

Libcallback(callback Web API)

message

PluginBase

Web application

CallCLibrary Web API
init addlistener

exec

Libcallbac
k

CallCLibrary

CLibraryHandler

Plugin

PluginModule

Executemessage

PastToJS

Libcallbackname path

trigger
trigger

Libcallback

gin
PluginModule

trigger
trigger

Figure 4: The architecture of CallCLibrary Web API.

The left is the overview and the right is the specific

implementation with data structure.

identify the corresponding .so library and complete the

work for initialization; Addlistener adds a callback

function to the web engine layer, the message about the .so

library would be delivered to the web application through

the callback function; Exec notifies the .so library to per-

form the specific actions and trigger the callback function

added by Addlistener to deliver the message to web

application. The parameters of Exec include name of the

.so library (“helloworld”), the specific action about

execution (“start”) and the callbackid (“1”), as shown

in Fig. 4. The three parameters of the Libcallback
are callback id (“callbackid”), whether the callback

function executes successfully (“isSuccessed”), and

the delivered message (“msg”). All the parameters of

Libcallback are delivered from web engine layer

through the callback Web API.

2) CallCLibrary in web engine layer: The specific

implementation of Init, Addlistener, Exec is in

web engine layer and it is the major part of CallCLi-

brary. We construct the CallCLibrary Web API through

the CallCLibrary.webidl and the implementation

files, which build the connection between application layer

and web engine layer . Then we create a class named

PluginBase to connect the plugin .so library with web

engine layer. In our CallLibrary framework, the plugin

.so library only has one class, and the class need inherit

the class PluginBase, the specific operation about the

plugin class need add to the function execute. The

work about connection with web engine layer is done by

PluginBase, the only work for the plugin .so library is

fill the function execute.

Similar with the regular Web API, we create the

moz.build file and CallCLibrary.webidl as shown

in Fig. 5. We define the three functions of the CallCLibrary

and declare a callback Web API named LibCallback.

The callback Web API is used to deliver the callback

function in Web-based OS and the callback information

would be delivered to the parameters of the function

Libcallback in web application.

1 [Constructor]
2 interface CallCLibrary{
3 boolean init(DOMString lib, DOMString path);
4
5 DOMString exec(DOMString lib, DOMString function,
6 DOMString callbackid);
7
8 void addListener(LibCallback libCallback);
9 };
10
11 callback LibCallback = void (DOMString callbackId,
12 boolean success,DOMString msg);

Figure 5: The code snippet of CallCLibrary.webidl.

Next we will present the specific implementation about

the CallClibrary. The related data structure in implementa-

tion is shown in TABLE. I. We show the implementation

in three phases: Initialization of CallCLibrary, adding

callback function and function execution in .so library

through CallCLibrary.

Initialization of CallCLibrary. In this phase, firstly

we get the name and the path of the .so library from

web application through webidl. Next we use the function

dlopen and dlsym to get the PluginModule in the

PluginBase and store the PluginModule into the

CLibraryhandler.

Adding callback function. The Libcallback from

web application will be delivered to web engine layer

through the callback Web API, then the trigger function

in PluginModule adds the Libcallback to Past
ToJS.

Execution. The trigger function in PluginModule of

the ClibraryHandler will notify the .so library to invoke

the function execute, and execute the specific action

in plugin which is implemented before. After the exe-

cution, the message to be delivered to web application

is generated. The plugin notifies the PastToJS to get

the Libcallback and invokes the call API of the

Libcallback with the message as a parameter in

it, then the message about the C/C++ plugin execution

would be delivered to the web application through the

LibCallback.

3) CallCLibrary in plugin (i.e., .so library): All the

C/C++ plugins must inherit the class PluginBase be-

fore being compiled to .so library. The only work for

the plugin is completing the function execute. The

PluginBase is the bridge between the plugin and the

CallCLibrary. Until now, we describe the specific im-

plementation about CallClibrary Web API, then we will

introduce the implementation on our self-test framework.

4) CallCLibrary on our self-test framework: We create

a plugin named self-test complying the rule about CallCLi-

brary and compile it to self-test.so. In the self-test

plugin, we use the function fopen and fread to get the

message about the device status file. Then we deliver the

message to self-test web application by CallCLibrary Web

API.

221

Table I: The Data structure in the implementation about CallLibrary.

Data structures Description

PluginModule It exist in PluginBase and CLibraryHandler. The specific implementation is in PluginBase

and it would be delivered to CLibraryHandler in the initialization. It contains trigger

functions for adding callback function and contains executing function in web engine layer.

CLibraryHandler The most important data structure in the CallCLibrary. It contains the name and the path

of the .so library, and stores a PluginModule which is delivered from PluginBase in the

initialization.

PluginBase The superclass of all the plugins (.so library) in CallCLibrary. It contains a PluginModule

and several utility functions, which are responsible for the connection with web engine layer.

PastToJS In the adding callback function stage, it stores the Libcallback delivered from web

application; In the execution stage, it invokes the Libcallback Web API and delivers the

callback message to web application.

D. Framework in web application layer.

We develop a web application named self-test which

is written in HTML5 and put it in the boot stage of the

Web-based OS. The web application receives the hardware

status information through the CallCLibrary Web API and

displays the information to users.

IV. EVALUATIONS

In this section, we present the experimental study of

our proposed self-test framework. Firstly we introduce the

setup of the experiments. Next, we conduct two experi-

ments: (i) Verify whether the self-test framework could

identify the hardware failure. (ii) Verify the performance

of CallCLibrary Web API.

We run the experiments on a smart watch device

equipped with Web-based OS (Firefox OS version 44.0)

and Android (version 6.0.0) respectively, with its CPU

1.6 GHz, 4 GB RAM. We choose the ADB (Android

Debug Bridge) [8] to control the device on a Ubuntu 18.04

desktop platform containing Intel (R) Core (TM) i7 CPU

1.8 GHz with 16 GB RAM.

A. Self-test framework verification.

1) Experiment : The hardware in the smart watch

include sensor, Wi-Fi, GPS, Bluetooth, battery and so

on. The hardware malfunction is not easy to be created

artificially and we conduct the simulation. Take the GPS

for example, we change its access permission to deter the

web application from accessing it, then the GPS fails to

work. We conduct the experiment on the same smart watch

device with simulation and no simulation respectively, and

observe the self-test framework whether could detect the

failure.

2) Results : We press the power-on key, self-test frame-

work shows the GPS works well. Then we conduct the

failure simulation and the self-test framework detects the

failure as shown in Fig. 6.

B. CallCLibrary performance

We conduct an experiment on the performance of Call-

CLibrary. The experiment compares CallCLibrary with

native Web API and JNI in Android.

Figure 6: The self-test result about GPS.

1) Preliminaries: All three APIs mentioned above

could invoke the function in .so library from application

level. The CallCLibrary and native Web API are in Web-

based OS on which the application is written in HTML5;

the JNI is in Android on which the application is written

in Java.

Native Web API. The Web-based OS provides Web

API which could manipulate the hardware. The web

engine layer handles the low-level access to the system

using a C++ API that is accessible to the higher levels.

For instance, when users need the device vibrate, the

web application in application layer submits requests to

access to underlying device via vibrate Web API, then the

web engine layer submits the request to the infrastructure

layer. The single request in web application layer would

result in operations in infrastructure layer. In HAL of

the infrastructure layer, the .so library implements the

connection between the hardware driver and the web

engine. The whole process is shown in Fig. 7. Compared

with native Web API, the CallCLibrary Web API provides

a more flexible interface for higher levels of the Web-

based OS, and we could add what we want in the .so

library as long as the rule of the CallCLibrary is complied.

If we want to add the interface for a new hardware, we

could use CallCLibrary instead of adding a new single

implementation like the vibrate Web API, in other words,

the CallClibrary is more general.

Android JNI. The JNI achieve the inter operation be-

tween the Java and native libraries. JNI technology enables

Java program to run on JVM (Java virtual machine) [9],

pass the parameters to native codes such as C/C++ and

get the return values. The invocation in Java attach the .so

library in HAL through JNI.

Web-based OS and Android. When developer design

222

Infrastructure layer

Web engine layer

Application layer
Web

application

Web API

HAL .so

Driver

Implementation

hal

Figure 7: The native Web API in Web-based OS.

the Web-based OS, Android is well-established in the

hardware-adaption, so they apply this part to the Web-

based OS (i.e., Infrastructure layer) , basing on the AOSP

(Android Open Source Project) [10]. Above the infrastruc-

ture layer, the Web-based OS transplants browser engine to

support the HTML5 application. By contrast, Android use

the JVM to support the Java application. In a word, Web-

based OS and Android are very similar at the bottom layer

such as device driver, which is the basis of experiment B.

2) Experimental design: In this experiment, we test

three APIs, which could invoke native function in ap-

plication: CallCLibrary Web API invokes the function

execute in self-test.so, Vibrate Web API and

Vibrate interface in Java (JNI) invoke the function

vibrate_on in libhardware_legacy.so. All the

.so library are under the /system/lib/ directory of the

device.

In Web-based OS, we develop a web application to test

CallCLibrary and Vibrate Web API. We add a timestamp

at the function exec of the CallCLibrary which is the

entry of the invocation, then we add another timestamp

to the function execute of the self-test.c, which is

to be compiled to self-test.so; The Vibrate Web

API could make the device equipped with Web-based OS

Vibrate. We add window.navigator.Vibrate() to

the web application, which is the invocation entry and

we add a timestamp here, then we add another timestamp

to the function vibrate_on of the vibrate.c, which

is to be compiled to libhardware_legacy.so. The

libhardware_legacy.so belongs to the HAL of the

Web-based OS.

In Android, we test the vibrate interface in Java.

We develop a vibrate android application with Android

Studio (version 4.2.2) In Java application, we import

the package android.os.Vibrator and get the

object vibrator with the function getSystemService
(Service.VIBRATOR_SERVICE). Then we invoke

the function vibrator.vibrate(1000) which

means vibrate 1000ms on the device and add a timestamp

here. Next, similar with the Vibrate Web API, we add

another timestamp to the function vibrate_on in

vibrate.c.

We conduct the invocation 50 times on each APIs (Call-

CLibrary Web API, native Web API, JNI). The invocation

time �T = T2−T1, T2 is the time when the function in

.so library being invoked and T1 is the time when the API

in application(Web or Java) being invoked. We utilize the

ADB tools to observe the experiment result and input the

“adb logcat” in the terminal of PC and get the according

time.

3) Results and discussions: As shown in Fig. 8, the

CallCLibrary outperforms native Web API and JNI. The

invocation time about CallCLibrary is smoother than oth-

ers. The average time in 50 invocations for CallCLibrary

is 2.7ms, 3.88ms for native Web API and 3.38ms for JNI.

The CallCLibrary directly invokes the .so library while

the native Web API has to complete the work in HAL be-

fore invokes the .so library, so is the JNI, which consume

extra time. We propose the CallCLibrary to provide a more

flexible method for application to invoke the function in

.so library, and the performance is acceptable.

Figure 8: The invocation time about CallCLibrary, native

Web API and JNI.

V. RELATED WORKS

A. Fault detection on mobile OS

We mainly focus on Android operating system, be-

cause the bottom of Web-based OS is based on AOSP.

The relationship between Android and Web-based OS

is introduced in Experiment B. Android fault detection

consists of hardware and software detection. The software

detection consists of two approaches, namely, static and

dynamic analysis [11]. As for the hardware detection, the

study is mainly focus on the driver analysis [12]–[14], the

power-on hardware test using the driver registration is not

involved.

B. C/C++ codes on Web

The CallCLibrary could invoke native code in web

application which is developed in a Web environment. At

present, there are two methods for Web to invoke native

code such as C/C++.

Compile the C/C++ code to the language the browser
could identify. The asm.js [15] is a subset of JavaScript

223

and is mainly used as compilation target. Developers start

with an existing C/C++ application which they can then

efficiently port to the web by compiling it to asm.js using

Emscripten [16]. WebAssembly [17] is a new byte code

designed for the web. It also provides a compilation target

for languages such as C/C++. The Web Assembly cannot

directly access Web APIs. The two methods mentioned

above is used for run the native application which is

compiled before on the web, as a comparison, we complete

the invocation through CallClibrary Web API on web

which is more flexible, we could invoke the native code

whenever we want.

Invoke the C/C++ dynamic linked library in the
browser. The NPAPI (Netscape Plugin Application Pro-

gramming Interface) could make the native code run as

part of the web application through invoking the C/C++

.so library. While the plugin developed by NPAPI runs

at the same level as the browser, which is a huge security

risk to the system, the NPAPI is blocked by mainstream

browser since 2014. Node.js is a server-side JavaScript

environment built on Google Chrome’s v8 engine. There

are two main ways for Node.js to use the function of the

C/C++layer, the first is to call the global variables process,

Buffer, etc., and the second is the function process.binding.

Node.js does not apply to the scenario in this paper.

VI. CONCLUSIONS

The hardware status is a major security part of an

mobile OS. Web-based OS is a type of mobile OS and

there is not a mechanism for the hardware status test

in the OS. So we proposed a self-test framework in

the boot stage of the device equipped with Web-based

OS. In the implementation of the self-test framework,

we propose a Web API named CallCLibrary to facilitate

the upper application invoke the native code. As a result,

the hardware status information is delivered from the file

in bottom of the OS to upper application through the

CallCLibrary Web API. In experiments, we verify the self-

test framework and the performance of CallCLibrary. The

experiments show that the framework could identify the

hardware failure accurately and CallCLibrary outperform

other similar technologies such as native Web API and

JNI.

REFERENCES

[1] M. Jadhav and K. K. Joshi, “Forensic investigation pro-
cedure for data acquisition and analysis of Firefox OS
based mobile devices,” 2016 International Conference on
Computing, Analytics and Security Trends (CAST), 2016,
pp. 456-461

[2] M. N. Yusoff, R. Mahmod, M. T. Abdullah and A. De-
hghantanha,“Mobile forensic data acquisition in Firefox
OS,” 2014 Third International Conference on Cyber Secu-
rity, Cyber Warfare and Digital Forensic (CyberSec), 2014,
pp. 27-31

[3] I. Bente, B. Hellmann, T. Rossow, J. Vieweg and J.
von Helden, “On Remote Attestation for Google Chrome
OS,”2012 15th International Conference on Network-Based
Information Systems, 2012, pp. 376-383

[4] B2G architecture, 02/06/2021. [Online]. Available:
https://developer.mozilla.org/enUS/docs/Archive/B2G OS/
Architecture

[5] Web API, 03/06/2021. [Online]. Available: https://
developer.mozilla.org/en-US/docs/Web/API

[6] C. Qian, X. Luo, Y. Shao and A. T. S. Chan, “On Tracking
Information Flows through JNI in Android Applications,”
2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2014, pp. 180-191
2021 IEEE/ACM 43rd International Conference on Soft-
ware Engineering (ICSE), 2021, pp. 1708-1718

[7] I. Pustogarov, Q. Wu and D. Lie, “Ex-vivo dynamic anal-
ysis framework for Android device drivers,” 2020 IEEE
Symposium on Security and Privacy (SP), 2020, pp. 1088-
1105

[8] ADB, [online] Available: https://developer.android.com/
studio/command-line/adb

[9] Chien-Wei Chang, Chun-Yu Lin, Chung-Ta King, Yi-Fan
Chung and Shau-Yin Tseng, “Implementation of JVM tool
interface on Dalvik virtual machine,” Proceedings of 2010
International Symposium on VLSI Design, Automation and
Test, 2010, pp. 143-146

[10] X. Song and C. Yang, “Mobile Device Management Sys-
tem Based on AOSP and SELinux,” 2017 IEEE Second
International Conference on Data Science in Cyberspace
(DSC), 2017, pp. 417-420

[11] L. Taheri, A. F. A. Kadir and A. H. Lashkari, “cExtensi-
ble Android Malware Detection and Family Classification
Using Network-Flows and API-Calls,” 2019 International
Carnahan Conference on Security Technology (ICCST),
2019, pp. 1-8

[12] S. M. S. Talebi, H. Tavakoli, H. Zhang, Z. Zhang, A. A.
Sani, and Z. Qian, “Charm: Facilitating dynamic analysis
of device drivers of mobile systems,” in 27th USENIX
Security Symposium (USENIX Security 18). Baltimore,
MD:USENIX Association, 2018, pp. 291–307

[13] D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “FIE
on firmware: Finding vulnerabilities in embedded systems
using symbolic execution,” in Presented as part of the
22nd USENIX Security Symposium (USENIX Security
13). Washington, D.C.: USENIX, 2013, pp. 463–478.

[14] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Vol-
ckaert, G. Vigna, C. Kruegel, J.-P. Seifert, and M. Franz,
“Periscope: An effectiveness probing and fuzzing frame-
work for the hardware-OS boundary,” in 2019 Network and
Distributed Systems Security Symposium (NDSS). Internet
Society, 2019, pp. 1–15.

[15] Noah Van Es, Jens Nicolay, Quentin Stievenart, Theo
D’Hondt, and Coen De Roover. “A performant scheme
interpreter in asm.js,” in 31st Annual ACM Symposium
on Applied Computing (SAC 16). New York, Association
for Computing Machinery, 2016, pp.1944–1951.

[16] A. Zakai, “Fast Physics on the Web Using C++, JavaScript,
and Emscripten,” in Computing in Science & Engineering,
vol. 20, no. 1, pp. 11-19, January/February 2018.

[17] A. Romano and W. Wang, “cWASim: Understanding We-
bAssembly Applications through Classification,” 2020 35th
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), 2020, pp. 1321-1325.

224

