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Abstract—Port operation vehicles are mainly responsible for
the transshipment of goods. If there is inadequate supervision in
the process of transshipment it is easy to cause such behaviors
as cargo leakage, cargo theft and illegal parking of drivers,
which cause economic losses to the port. In order to discover
such behaviors in time, the unsupervised anomaly detection algo-
rithm Self-encoder-based Deep Feature Fusion Model(S-DFFM)
is proposed to judge whether the trajectory of operation vehicles
is abnormal or not. The method comprehensively characterizes
the trajectory by fusing the shallow features of low-dimensional
trajectory and the deep features of high-dimensional trajectory,
which frees the trajectory from the limitation of spatial attributes.
The experimental data adopts the real trajectory data of one
month (7,547 trips) of operating vehicle trajectories of a port
in Chongqing, and the experimental results show that S-DFFM
can better represent the trajectory features, and the accuracy
of trajectory abnormality detection using S-DFFM is as high as
96%.

—Trajectory; Anomaly detection; Feature fusion;
Unsupervised detection;

I. INTRODUCTION

The port is the hub center of water and land transportation,

and the loading and unloading operation of the port is usually

the transit of goods by operating vehicles. In the process of

transshipment, due to the complex roads in the port, various

operation types, harsh yard environment, and uncontrollable

human factors, the process is prone to some abnormal op-

eration behaviors such as cargo leakage (cargo not passing

through the weighing equipment), cargo theft (transferring

cargo from owner A to owner B’s yard), and illegal parking

(eating snack during operation). The operating vehicle will

generate massive trajectory data in the process of operation,

and by analyzing the trajectory data[1] and detecting the

abnormal trajectory, the real behavior pattern of the operating

vehicle hidden in the normal operation mode can be found, and

the abnormal intention of the operating vehicle operation can

be exposed, so that the supervisors can make corresponding

measures.

Knorr et al[2] transformed the trajectory into some represen-

tative features consisting of position, direction and velocity,

instead of just viewing the trajectory as a series of points, and

then later detected the trajectory anomaly by comparison of

distances. This method only compares the overall character-

istics of the trajectory and ignores the local characteristics,

and the problems exposed by this method become more and

more obvious as the trajectory becomes longer. To solve the

problems caused by comparing whole trajectories, Lee et al[3]

designed a division and detection framework and proposed

the TRAOD(Trajectory Outlier Detection) algorithm accord-

ingly.Zhu et al[4] proposed a time-dependent popular path

trajectory outlier detection algorithm TPRO(Time-dependent

Popular Routes), which takes into account temporal anomalies

but requires a lot of time computation during preprocess-

ing.Laxhammar et al[5] proposed an online supervised tra-

jectory anomaly detection algorithm SHNN-CAD(Sequential

Hausdorff Nearest-Neighbor Conformal Anomaly Detector),

which applies a consistent variance detector[6] to calculate the

statistical confidence values of trajectories.

In this paper, considering the limitations of existing distance

or density-based algorithms and the special characteristics of

in-port trucking operations (some road networks are dense,

operation types and operation goods are diverse, there are

stationary and mobile states in operation links, and operation

drivers can be changed, etc.),we propose the Self-encoder-

based Deep Feature Fusion Model (S-DFFM), which converts

shallow feature sequences into deep feature sequences and

splices shallow feature sequences with deep feature sequences

into fused feature sequences to comprehensively represent the

features of trajectory segments from both deep and shallow

layers.In the anomaly detection stage, the anomalous trajectory

segments are extracted by comparing the similarity indices

between the fused feature sequences, and then the percentage

of the anomalous trajectory segments on the trajectory as a

whole is considered to finally detect the anomalous trajectory.

II. OPERATING VEHICLE TRAJECTORY FEATURE

EXTRACTION AND CONVERSION

Deep neural networks have been shown to have a strong

ability to learn verbal data[7], textual data[8], and image data[9].

Trajectory data is three-dimensional data consisting of two-

dimensional coordinates and timestamps, and it has been

shown through empirical studies that it is not feasible to simply

input three-dimensional data of the original trajectory into
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deep learning algorithms[10]. Therefore, in order to make the

trajectory data suitable for deep neural network algorithms,

trajectory features with stronger semantic expressions need to

be extracted from the original trajectory data and the original

3D trajectory data is replaced by a representation of feature

sequences.

As shown in Fig.1, the core of feature extraction and

transformation is divided into two steps. First, the geometric

features are extracted from a number of original trajectory

fragments of variable length after division, and the geometric

features are transformed into a shallow feature sequence F of

fixed length after dimensional expansion; second, the shallow

feature sequence is transformed into a fused feature sequence

FM using a deep feature fusion model based on self-encoder,

i.e., the shallow feature sequence F is stitched with the deep

trajectory feature sequence FD to obtain the fused feature

sequence FM .

Fig. 1. Feature Extraction and Transformation.

A. Shallow Feature Extraction

Definition 1-1. Shallow feature sequence: the geometric

features of the expanded trajectory are called the shallow

feature sequence of the trajectory, and the set Q composed of n
shallow trajectory feature sequences is called the set of shallow

feature sequences, denoted as Q = {F1, F2, F3 . . . Fn},where

each shallow feature sequence Fi represents a trajectory seg-

ment TSi(1 ≤ i ≤ n).The dimensionality expansion requires

the calculation of mean, minimum, maximum, 25%, 50% and

75% quartiles, and standard deviation[11] for each trajectory

segment feature, and the obtained calculation result is the

shallow feature sequence of each trajectory segment.According

to Definition 1-1, the velocity change fv , distance change fd,

angle change fa and acceleration change facc of the trajectory

analyzed in this section, the shallow feature sequence F is

expressed as F = {fv, fd, fa, facc}×{ mean, minimum, max-

imum, 25% quartiles, 50% quartiles, 75% quartiles, standard

deviation }, It is obvious that the shallow feature sequence

F is a 28(4 × 7) dimensional feature sequence. The shallow

feature sequence can visually reflect the trajectory fragments

and quantify the original GPS trajectory data at the same time.

The set of shallow feature sequences Q is used to represent the

trajectory fragment set TS, which is convenient for subsequent

analysis and processing.

B. Deep Feature Fusion

After obtaining the shallow feature sequence, the depth

feature fusion model based on the self-encoder is used to

convert the shallow feature sequence into the deep feature

sequence, and the shallow feature sequence is stitched with

the deep feature sequence into the fused feature sequence

to comprehensively represent the features of the trajectory

segments from both deep and shallow aspects.

1) Self-Encoder: Fig.2 shows a three-layer self-encoder

model, where L1 is the input layer, L2 is the hidden layer,

and L3 is the output layer. The input layer L1 and the

hidden layer L2 constitute the encoder, which is responsible

for extracting potential features. The hidden layer L2 and the

output layer L3 form the decoder, which is responsible for

reconstructing the data input from the hidden layer. Denote

the data in input layer L1, hidden layer L2 and output layer

L3 by x, h and y (x, y ∈ [0, 1]n, h ∈ [0, 1]m). W is the

weight matrix(W ∈ Rm×n), b1 (b1 ∈ Rm) denotes the bias

of the input layer L1 and b2 (b2 ∈ Rn) denotes the bias of the

hidden layer L2.

Fig. 2. Self-Encoder.

The value h in the hidden layer L2 and the value y in the

output layer L3 are calculated by equation (1) and equation

(2), where σ() is the sigmod activation function.

h = f(x) = σ (Wx+ b1) (1)

y = g(h) = σ
(
WTh+ b2

)
(2)

The purpose of using the self-encoder is to extract the

salient high semantic features of the original data from the

hidden layer, while having the function of dimensionality and

data noise reduction. In order to make the learned hidden

layer meaningful, the data output from the encoder needs to

enter the decoder again for decoding, and through repeated

iterations, the parameters of input and output are updated

so that the values of y and x are close to each other, i.e.,

the self-encoder tries to learn the target optimization function

of y = Fw.b(x) ≈ x. The target optimization function can

be expressed by the reconstruction error function L(x, y), as
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shown in equation (3). According to the reconstruction error

function, the loss functionloss can be obtained, and the loss
function is calculated by equation (4).

L(x, y) = −
n∑

i=1

(xi log (yi) + (1− xi) log (1− yi)) (3)

loss =
∑

x∈Q

L(x, g(f(x))) (4)

The weight matrix W and the biases b1 and b2 are updated

as shown in equation (5), equation (6) and equation (7).

Where,α denotes the learning rate.

W new = W old − α
∂loss

∂W old
(5)

bnew1 = bold1 − α
∂loss

∂bold1

(6)

bnew2 = bold2 − α
∂loss

∂bold2

(7)

2) Fusion Feature Sequence Conversion: Using the deep

feature fusion model based on self-encoder, the shallow feature

sequences and deep feature sequences are transformed into

fused feature sequences, which takes into account the detailed

information of the shallow features and combines the semantic

information of the deep features, and can highlight both the

shallow and deep features of the trajectory segments, and the

model structure is shown in Fig.3.

Fig. 3. Deep Feature Fusion Model.

The dimension of the shallow feature sequence at the input

is 28. Considering the calculation time consumption and the

size of the reconstruction error, the dimensions of the hidden

layer L2 of the self-encoder 1 and the self-encoder 2 are set to

10 and 15 respectively. When the 28-dimensional F is input to

the model, the 10-dimensional FD is obtained through auto-

encoder 1, and then spliced with F and sent to auto-encoder

2, and finally 15-dimensional FM is obtained.

C. Unsupervised Learning Based Feature Sequence Cluster-
ing

DBSCAN(Density-Based Spatial Clustering of Applications

with Noise) can find clusters of arbitrary shapes and irregular

clusters without prior knowledge of the number of clusters,

but DBSCAN is too sensitive to parameters, and the clustering

effect may be completely different under different parameters,

which poses a great challenge to the parameter adjustment in

experiments.OPTIC(Ordering Points to Identify the Clustering

Structure) is an improved algorithm of DBSCAN, which can

effectively solve the parameter sensitivity problem.

1) Similarity Index Anomaly Detection: Definition 1-2.

Similarity index: The similarity matrix S is obtained by fusing

the cosine similarity between each element of the set of feature

sequences, and the set consisting of the similarity indices of

all trajectory segments is the similarity indices A(The sum of

the i-th row of S anoi =
∑

si(1 ≤ i ≤ n))
Definition 1-3. anomalous trajectory fragment: given a sim-

ilarity index threshold ρ, for a trajectory fragment TS, if its

similarity index is less than the threshold ρ, then the trajectory

is said to be fragment TS is an anomalous trajectory fragment.

Definition 1-4. Abnormal trajectory: Given an abnormal

length ratio threshold τ , a trajectory T is said to be abnormal

if the length ratio of its abnormal trajectory segment TS is

greater than the threshold τ .

After clustering, the cluster set Cl containing each cluster

can be obtained. firstly, the cosine similarity matrix of each

cluster is calculated; secondly, the similarity index set is

calculated according to definitions 1-2; after that, according

to definitions 1-3, the anomalous trajectory fragment can be

obtained; finally, the anomalous trajectory is finally determined

by definitions 1-4.

III. EXPERIMENT AND ANALYSIS

A. Experimental Data Set

The trajectory data set used in this paper is the trajec-

tory data of one month (2018-12-19 00:00:00 to 2019-01-18

23:59:59) of the internal transport vehicle operations obtained

from a port in Chongqing. Using the vehicle-mounted mobile

terminal, data were collected with a sampling frequency of

8s/time, and a total of 1,239 operation instructions, 7,547 trips,

and 3,415,835 trajectory points were collected.

B. Results and analysis

The parameters involved in the trajectory anomaly detection

algorithm include open angle threshold ω, learning rate, near-

est neighbor threshold ε, minimum number threshold MinPts,

anomaly index threshold ρ and anomaly trajectory segment

length ratio threshold τ . The settings of these parameters

directly affect the results of trajectory anomaly detection.

The setting of the learning rate directly affects the opti-

mization effect of the loss function in the self-encoder. The

six curves from loss1 to loss6 are shown in Fig.4, which

correspond to the loss functions with learning rates of 0.05,

0.1, 0.3, 0.5, 0.7 and 0.9, respectively.

The settings of the nearest neighbor threshold ε and the

minimum number of MinPts have a direct impact on the

clustering. However, the OPTIC algorithm is not sensitive to

the parameters, and the reference value of the nearest neighbor

threshold ε is given in the clustering, which greatly reduces the

difficulty of parameter adjustment. After engineering experi-

ence and several experiments, the minimum number threshold

MinPts is in the range of 15-25, and the nearest neighbor
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threshold ε is in the range of 0.5-0.6, which is more suitable.

Fig. 4. Loss Function of Learning Rate.

Since the workload of manually calculating the result set

is very large, the experiments in this section randomly select

the trajectory data under 50 (45 ship unloading instructions

and 5 transtacking instructions), 75 (67 ship unloading instruc-

tions and 8 transtacking instructions), 100 (90 ship unloading

instructions and 10 transtacking instructions), and 125 (112

ship unloading instructions and 13 transtacking instructions)

operation instructions in the data set, and after the extraction of

trajectory real state feature sequences, the results are compared

with the manually acquired result set, and the results are

obtained as shown in Fig.5.

Fig. 5. Accuracy of Algorithms for Data of Different Sizes.

Overall, with the increase of the number of job instruc-

tions, the accuracy rate of S-DFFM is roughly at about 96%

and the false alarm rate is only about 4%. The algorithms

KNN(K-Nearest Neighbor), CNN(Convolutional Neural Net-

works), SVM(Support Vecor Machine), TSAD-FE(Trajectory

Structure Anomaly Detection Based Feature Entropy), TAD-

FD(Deep Characteristic) and the S-DFFM proposed in this

paper are also selected, and the accuracy rate is averaged by

several experiments to get as shown in Fig.6. Through the

experimental results, it can be seen that the anomaly detection

method based on unsupervised feature fusion proposed in this

paper makes the similarity measure between trajectories more

accurate and can prove the effectiveness of the algorithm and

feasibility of the algorithm.

IV. CONCLUSION

In order to effectively supervise the cargo transfer process

of port operation vehicles, this paper proposes a self-encoder-

based feature fusion model (S-DFFM). The existing anomaly

detection algorithm does not comprehensively consider the

common features of the trajectory and is limited by the spatial

Fig. 6. Comparison of Accuracy Rates of Different Algorithms.

attributes of the trajectory, and this paper will fuse shallow

feature sequences with deep feature sequences to represent

the fused features of the trajectory, and the trajectory is

represented by the feature sequences, which dilutes the spatial

attribute of the trajectory, and the limitation of using spatial

distance to judge the abnormality is solved. Based on the real

operation trajectory data of a port in Chongqing, S-DFFM

extracts the fusion features of the trajectory by using the

fusion feature model and experiments the data set by using

the unsupervised anomaly detection algorithm OPTIC. The

experimental results show that the trajectory state extraction

method of the fusion feature model in this paper can accurately

extract the real state of the trajectory of the operating vehicle

and can extract the stationary state of the vehicle during the

operation. The experimental results show that the accuracy

of S-DFFM in detecting anomalies in the trajectory of oper-

ating vehicles reaches 96%, which verifies that the trajectory

anomaly detection algorithm proposed in this paper is suitable

for detecting anomalies in the trajectory of operating vehicles

in this port.
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