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Abstract—With the rapid development of deep learning,
face recognition technology based on deep learning has
been widely developed in recent years. However, during
the training of the deep learning model, there is a risk
of privacy leakage. If an attacker obtains private data,
such as tags of the training data, the face images may
be restored, and private information is leaked. To pro-
tect the private information of the face recognition model,
we introduce differential privacy technology to propose a
privacy-preserving face recognition scheme using the Siamese
Network framework called DP-Face. Unlike other privacy-
preserving face recognition methods, we can adjust the
balance between privacy and utility through privacy budgets
according to actual needs. Experimental results show that
the effectiveness and privacy of the proposed DP-Face can
be well guaranteed.

Keywords-privacy-preserving; differential privacy; face
recognition; deep learning

I. INTRODUCTION

In recent years, following dramatic advances in artificial

intelligence technologies, biometric recognition technol-

ogy is rapidly integrating into people’s lives. As one of

the most popular biometric technologies, face recognition

can identify individuals without their knowledge. In 2015,

the FaceNet constructed by Schroff et al. achieved a

recognition rate of 99.6%, which implies the reliability and

practicability of face recognition technology [1]. Besides,

Alipay provides facial payment services to more than 243

million users in China in 2020.

However, more and more security problems have grad-

ually been exposed as deep learning is widely used in

face recognition. Generally speaking, the training process

of a deep learning model requires a large amount of rep-

resentative data, which may contain sensitive information

of the data owner such as age and gender. For the sake

of security, the model should not disclose such private

sensitive information. In a recent work [2], the attacker

only needs to obtain the label of the data in the training set

and get access to the model, and then the face image can

be recovered from the model. In this case, the capability of

effective face recognition is desired when keeping users’

privacy confidential to the attacker. Obviously, it can be

solved by employing the signal processing technologies in

the encrypted domain [3], [4].

In this paper, we employ differential privacy technology

to present a privacy-preserving face recognition (DP-

Face). This scheme assumes that only one party holds

sensitive private data, and we mainly focus on privacy

leakage caused by model output. Our DP-Face uses

Siamese Network to construct a similarity measurement

network for better recognition accuracy. Meanwhile, to

protect the privacy of training data, we introduce the

differential privacy strategy. In addition, DP-Face can

achieve the trade-off between the privacy and utility of the

model by adjusting the privacy budget. The experiments

illustrate that our DP-Face can well finish the task of

face recognition while protecting private data from being

leaked.

II. PRELIMINARY

In this section, we review the basic concept of differen-

tial privacy technology and Siamese Network, which serve

as the cornerstone for constructing the proposed DP-Face.

A. Differential Privacy
Differential privacy [5] ensures that inserting or deleting

records in the data set will not affect the output results.

And also, the protection model does not care about the

background knowledge of the attacker. Even if the attacker

has all records except a certain record, it cannot infer the

undisclosed record. The formal definition of differential

privacy is given below.

Definition 1 ((ε, δ)-DP). A randomized algorithm M :
D → R satisfies (ε, δ)-differential privacy if for any

neighbouring datasets d, d′ ∈ D and for any all output

sets S ⊆ R it holds that

Pr[M(d) ∈ S] ≤ eεPr[M(d′) ∈ S] + δ, (1)

where d and d′ have at most one record difference. Note

that the randomness of the algorithm M means that for

a specific input, the output of the algorithm is not a fixed

value but obeys a certain distribution. The parameter ε
represents the privacy budget. And the smaller the ε, the

higher the degree of privacy guarantee.
The typical mechanisms for achieving differential pri-

vacy are the Laplace mechanism and Gaussian mecha-

nism [6]. Among them, the Laplace mechanism provides

a strict (ε, 0)-DP, and the Gaussian mechanism provides

a relaxed (ε, δ)-DP [7]. In DP-Face, we use the Gaussian

mechanism, which is defined as follows:

M(x) � f(x) +N
(
0, σ2s2f

)
, (2)
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Figure 1. Architecture of Siamese Network.

where sf indicates the sensitivity related to the function

f .

Definition 2 (l2-Sensitivity). For any neighbouring

datasets d, d′ ∈ D, given a function f : D → R, the

l2-sensitivity Δf is defined as:

Δf = max
d,d′

||f(d)− f (d′) ‖2. (3)

B. Siamese Network

The goal of the Siamese Network [8], [9] is to calculate

the similarity of two similar images. It has two identical

sub-networks, both of which have the same parameters

and weights. The special characteristic of this network is

that its training samples take image pairs as input, and the

features are extracted by two sub-networks respectively,

and finally, the feature vector pairs of the samples are

obtained. The architecture of the Siamese Network is

shown in Figure 1.

Here, (X1, X2) represents the input image pair,

(GW (X1), GW (X2)) is the output feature pair of network

1 and 2. Then, the similarity EW of the sample pair will

be predicted through a reasonable similarity measure.

In Siamese Network, the commonly used loss function

is the contrastive loss function, which is defined as:

L(W ) =
1

2
(1− Y )D2

W +
1

2
Y max(0,m−DW )

2
, (4)

where DW = ‖GW (X1) − GW (X2)‖2 denotes the Eu-

clidean distance between the outputs, Y denotes the label,

and m is the marginal value greater than 0.

III. PRIVACY-PRESERVING FACE RECOGNITION USING

SIAMESE NETWORK

In this section, we present the proposed Privacy-

Preserving Face Recognition with Siamese Network (DP-

Face) model and the privacy Analysis of DP-Face.

A. DP-Face Framework

The Siamese Network in our DP-Face scheme is de-

signed on a pre-trained network. Pre-trained VGG16,

Inception, or ResNet in ImageNet is often selected as a

candidate backbone network for Siamese Network. Mean-

while, The output of the fully connected layer of the

backbone network is used as a feature of the input image.

Figure 2. Construction of the backbone network of Siamese Network.

Note that the gradient contains private information about

the dataset in the deep learning model. It can be ensured

that the subsequent updating operation of the parameter

value will not leak user information as long as the gradient

is disturbed. Therefore, instead of adding noise to the final

parameters, we add noise proportional to the training data

on the gradient of the Wasserstein distance. The specific

details of DP-Face are shown in Figure 2 and Algorithm

1.

Algorithm 1: Differentially private Stochastic Gra-

dient Descent in DP-Face
Input: Examples x1, x2, . . . , xN , learning rate αt,

number of iterations n, group size L,

gradient norm bound C, loss function

L(θ) = 1
NL(θ, xi).

Output: θn and compute the overall privacy cost

(ε, δ) using a privacy accounting method.

Initialize model parameters θ0
for t = 1 to n do

Take a random sample Lt with sampling

probability L/N
Compute gradient
For each i ∈ Lt, compute

gt(xi)← �θtL(θt, xi)
Clip gradient
gt(xi)← gt(xi)/max(1, ‖gt(xi)‖2

C )
Add noise
g̃t ← 1

L (
∑

i gt(xi) +N (0, σ2C2I))
Descent
θt+1 ← θt − αtg̃t

end

B. Privacy Analysis of DP-Face

To prove that DP-Face satisfies differential privacy, we

analyze the privacy loss of our DP-Face model.

Definition 3 (Privacy Loss). For the given neighbouring

datasets d and d′, assuming aux is the auxiliary input and

o(o ∈ R) is the output, the privacy loss at o can be defined

as:
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Figure 3. Sample images from ORL Database of Faces.

c(o;M, aux, d, d′) � log
Pr[M(aux, d) = o]

Pr[M(aux, d′) = o]
(5)

The privacy loss is introduced to describe the distribution

difference between two data. Besides, the privacy loss

random variable c(o;M, aux, d, d′) is used to describe the

privacy budget of M(d) in Definition 1.

Definition 4 (Log moment generation function). For

the randomized algorithm M, define the λ-th moment

βM(λ; aux, d, d′) as the log of moment generation func-

tion evaluated at λ:

βM (λ; aux, d, d′) �
logEo∼M(aux,d) [exp (λc (o;M, aux, d, d′))] .

(6)

Definition 5 (Moment Accountant). The moment ac-

countant is defined as:

βM(λ) � max
aux,d,d′

βM(λ; aux, d, d′), (7)

In our DP-Face, we use the moment accountant to

track the privacy loss caused by the published model and

provide a privacy loss boundary with high accuracy.

The following theorems and lemma can be proved in

the works [5], [10], which ensure our DP-Face scheme

satisfies (ε, δ)-DP guarantee.

Theorem 1 (Composability). Suppose that a randomized

algorithm M consists of a sequence of adaptive mecha-

nisms M1, · · · ,Mk, where Mi :
∏i−1

j=1Rj × D → Ri.

For any λ and αM(λ),

αM(λ) ≤
k∑

i=1

αMi(λ).

Theorem 2 (Tail bound). For any ε>0, the randomized

algorithm M is (ε, δ)-differentially private for

δ = min
λ

exp(αM(λ)− λε).

Lemma 1. For any δ ∈ (0, 1), σ>

√
2 ln(1.25/δ)Δf

ε , the

noise Y ∼ N(0, δ2) satisfies (ε, δ)-DP.

(a) (b)

(c) (d)

(e) (f)

Figure 4. The loss and accuracy of DP-Face at different noise levels:
(a) Loss at large noise level; (b) Accuracy at large noise level; (c) Loss
at medium noise level; (d) Accuracy at medium noise level; (e) Loss at
small noise level; (f) Accuracy at small noise level.

IV. PERFORMANCE OF DP-FACE

To evaluate the performance of DP-Face, we utilize

Tensorflow and Keras in Python 3 on one server, which

is equipped with an 8-core Intel Core i7-9700 CPU

@3.00GHz and 8GB of RAM running Windows 10-

64bit. All the experiments were conducted with the ORL

database created by Olivetti Research Laboratory in Cam-

bridge, England.It contains 40 directories, each of which

represents a different person, and contains ten face images.

All the images are in PGM format, and each image is sized

at 92×112, with 256-level grey per pixel. The partial face

images are displayed in Figure 3.

A. Data Processing

The images in the ORL dataset are divided into the

training set and the test set, where the training set is the

first 37 directories of the 40 directories in the ORL and

the last three directories for the test set. Considering the

training set (370 face images in total) is limited, we use

the pre-trained ResNet50 as the backbone network of the

Siamese Network for feature extraction.

B. Performance Evaluation

In the plaintext model corresponding to our DP-Face,

for the output of ResNet50, we first calculate the Euclidean
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Figure 5. Effects of different parameters on classification accuracy.

distance between two output feature, then use the Dense

layer and the Activation layer to construct the similarity

calculation network. Here, the activation function is ReLU

and the loss function is contrastive loss function. Using the

batchsize with 64, we can reach the accuracy of 98.44%
in the plaintext domain.

To better observe the effect of DP-Face, we conducted

the experiments to evaluate the loss and accuracy of

the results under different noise levels. Specifically, the

noise is set to 0.05, 0.10, 0.20, respectively. The higher the

value, the more noise is added. Figure 4 shows the training

and testing loss/accuracy as a function of the number of

epochs in each plot. The toss accuracy performance varies

with respect to the levels of the noises. As the noise

increases, the accuracy of DP-Face will decrease, whereas

the more the loss is generated. In the case of high noise,

medium noise, and small noise, the accuracy was 95.31%,

96.87%, and 98.40%, respectively. In other words, when

the added noise range is 0.20 ∼ 0.05, the accuracy of DP-

Face remains above 95%, which means our DP-Face can

complete face recognition tasks with high accuracy.

Besides, we verify the effect of differential privacy

budget ε and a fixed noise scale δ for accuracy of DP-

Face with the Gaussian mechanism. Here, privacy bud-

get ε ranges from 0.1 to 10 and the noise scale δ is

10−2, 10−3, 10−4, 10−5, respectively. From Figure 5, we

can obtain the accuracy of the different (ε, δ), for example,

when ε = 0.25 and δ = 0.01, the accuracy of our DP-Face

is 92.19%. In addition, it can be observed that for a fixed

privacy budget ε, changing the δ value has a small impact

on accuracy, but for a fixed noise scale δ value, changing

the ε value has a large impact on accuracy. Plus, for a

fixed δ, when more noise is added, the intensity of privacy

protection will be greater; that is, the privacy budget ε will

be smaller. However, it is not hard to find from Figure

5 that when the privacy budget is smaller, the model

accuracy is lower. It means that the availability of the

face recognition scheme will also decrease. Nevertheless,

for the above (ε, δ), the accuracy of our DP-Face remains

above 90%. Therefore, this framework can ensure that the

accuracy of face recognition remains at a high level while

protecting the privacy of face images.

V. CONCLUSION

In this paper, differential privacy technology and

Siamese Network are used to construct a privacy-

preserving face recognition scheme, which preserves the

privacy of face training data in a differentially private

case. The DP-Face model mitigates information leakage

by adding designed noise to the gradients during the

deep learning process. In addition, experiments show that

the DP-Face can still converge under the constraints of

noise-added training data and achieve high-accuracy face

recognition.
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