
Parallelization implementation of topographic viewpoint filtering algorithm
based on terrain viewshed using MPI and OpenMP

Yiwen Wang, Tao He, Wanfeng Dou
School of Computer & Elelctronic Information, Nanjing Normal University, Nanjing 210023

Nanjing 210023, Jiangsu, China
douwanfeng@njnu.edu.com

Abstract—The problem of multi-point visibility is an
important part in terrain visibility analysis. It is widely used
in military, urban planning, protection of endangered
animal and other fields. Siting observer point is a kind of
multi-point viewshed problem. It is generally abstracted as
selecting the least number of viewpoints on a given terrain to
maximize the joint viewshed covered by them. A candidate
viewpoint filtering method proposed by Wang et al. to
effectively solve this problem, includes k-means clustering of
candidate viewpoints, calculation of contribution degree of
each viewpoint, and ranking of viewpoints on contribution in
each cluster. But this method is very time-consuming.
Therefore, this paper adopts the MPI parallel program
framework to implement the parallelization for the k-means
algorithm, and uses OpenMP to realize the parallelization of
the ranking process of view contribution of candidate
viewpoints and the calculation process of view contribution
of each viewpoint. The experimental results show that our
parallelization scheme of viewpoint filtering can greatly
reduce the calculation time and improve the efficiency of the
algorithm.

Keywords- multi-point viewshed analysis; observer siting;
viewpoint filtering; parallelization

I. INTRODUCTION

Terrain visibility analysis uses computer graphics
technology and computer geometry principle to solve the
problem of visibility between target point set and
observation point set on terrain. It is an important part of
geospatial analysis [1]. Visibility issues can generally be
divided into two categories: The first category is the
calculation of visibility information of a given monitoring
point. This information mainly includes the visual size and
range of monitoring points of different properties and
types[2]. The second category is to use these visual
information to solve different application problems, such
as location planning, path planning, real-time roaming and
others[3].

Visibility analysis has been widely used in the process
of environmental resource management, urban planning
and military activity analysis, such as optimal path
planning[4] , forest fire monitoring[5], communication
tower positioning[6], military observation points
siting[14],etc. These applications can be attributed to
multi-point viewshed analysis. However, unlike single-
point viewshed analysis that only needs to calculate the
viewshed of a single point, multi-point viewshed analysis
needs to obtain the largest or smallest joint viewshed by
calculating the viewshed of a set of points. Therefore, the
problem of observation point siting based on multi-point
viewshed analysis is a combinatorial optimization problem,
because it involves the optimal combination of multiple
viewpoints and multiple target points, so it is also an NP
problem[7]. The complexity of solving such a problem will

increase exponentially with the increase of the number of
candidate viewpoints.

At present, the viewpoint filtering method can
effectively solve the multi-viewpoint viewshed. It first
obtains some feature points on the terrain as candidate
viewpoints, then evaluates these candidate points, and
filters out some viewpoints with low contribution or poor
quality until the required number of viewpoints is met[12-
13]. In the problem of siting observation points, it is
necessary to calculate the viewshed of a large number of
terrain points, which is very time-consuming. Even if the
terrain feature points are selected as the candidate
viewpoints, the number is still very large. Therefore, it is
of great significance to study the parallelization method
and its solution of multi-viewpoint viewshed analysis.
However, the current research mainly focuses on the
parallelization of single-point viewshed computation, such
as the parallelization of X-draw algorithm[14]. In the fast
filtering method of terrain point, before performing the
filtering operation, all the candidate points should be
clustered by k-means method[15] , and then the terrain
points in each cluster are sorted according to their
viewshed quality. Although the feature points extracted
from the whole terrain are used as candidate points, the
number of these candidate observation points is still very
large. Therefore, clustering operation and visual quality
calculation of each terrain point takes a lot of time. This
paper considers the parallelization of each step in the
filtering method to improve the computational efficiency.

II. TERRAIN POINT FILTERING METHOD AND ITS
FRAMEWORK OF PARALLEL METHOD

A. Terrain point filtering method
The main idea of the fast filtering method for

candidate viewpoints is given as follows [12-13]. The
candidate viewpoints are clustered by K-means algorithm
based on geometric distance, and than N clusters are
obtaind. Then, the viewpoints in each cluster are sorted
according to their viewshed quality. Then the viewpoints
with the lowest viewing quality in all clusters are filtered
cyclically until the number of viewpoints in all cluster
meet the predetermined number requirements. The fast
filtering method for candidate viewpoints includes the
following steps:
1)Topographic feature point extraction. With the
acquisition of high precision terrain data, the number of
terrain grid points is also increasing. If every point on the
entire terrain is treated as a candidate viewpoint, it will
inevitably lead to a large amount of time overhead.
Therefore, using topographic feature points as candidate
viewpoints can greatly reduce the time cost of location
optimization calculation. Available topographic features

119

2021 20th International Symposium on Distributed Computing and Applications for Business Engineering and
Science (DCABES)

2473-3636/21/$31.00 ©2021 IEEE
DOI 10.1109/DCABES52998.2021.00037

include mountaintops, ridge points, saddle points, flat
locations[16],etc. The research shows that the topographic
feature points have higher visibility than the general grid
points in the terrain.
2)Clustering all topographic feature points. According to
the specific requirements of the actual number of site
selection plans, we can determine the total number N of
clusters. In this paper, K-means clustering algorithm is
used to cluster the terrain feature points, and the clustering
centers of multiple clusters and each cluster are obtained.
3)Sorting the terrain feature points by visual quality in
each cluster. The evaluation index is calculated according
to the viewshed quality of the viewpoints in each cluster
and sorted according to the value. Here, all viewpoints in
clusters are sorted in descending order of their evaluation
index.
4)Filter the feature points with the lowest quality of
viewshed. Comparison is made on the viewshed quality of
feature points in all clusters. If a feature point in a cluster
is with the lowest viewshed quality in all clusters, this
point will be deleted. Otherwise, it will be inserted into
another cluster that is not with the smallest view quality.
5)Repeat steps 3-4 until the numbers of points in each
cluster meets the expected requirements.
The fast filtering method of candidate feature points
traverses all clusters until the number of viewpoints in the
cluster satisfies the termination condition. Please pay
attention to that when repeating Step 3, just reassess the
viewshed quality of all feature points in the cluster where
new feature points are inserted, rather than all clusters.

B. Parallel framework of topographic point filtering
algorithm
The terrain point filtering algorithm is divided into

three parts: the clustering of terrain points, the sorting of
terrain points in the cluster, and the filtering of terrain
points.

Due to the large number of the terrain points, even if
the terrain feature points are extracted as candidate points,
the number of these candidate points is still very large.
The use of serial k-means clustering method will cause the
problem of low computational efficiency. Therefore, MPI
parallel k-means algorithm is considered. When the
clustering operation is completed, the viewpoints in each
cluster should be sorted. When evaluating the quality of
viewpoints, the sights of each viewpoint should be
calculated. The calculation of the sights of a single
viewpoint is time-consuming. Therefore, when calculating
the viewshed of a large number of viewpoints, we adopt
the OpenMP parallel program framework to reduce the
calculation time. The last part is the filtering of candidate
viewpoints. Considering that the viewpoints in the cluster
needs to be re-sorted according to the quality of their
viewing areas during the filtering process, OpenMP is also
used for parallel calculation to improve the computational
efficiency.

In summary, the parallelization method based on terrain
point filtering algorithm is mainly divided into the
following three parts: 1)parallelization of k-means
clustering based on MPI; 2)parallelization of terrain point

sorting based on OpenMP; and 3)parallelization of terrain
point filtering based on OpenMP.

III. PARALLEL METHOD OF TERRAIN POINT FILTERING

A. Parallelization of k-means Clustering
MPI(Message Passing Interface) is one of the

important technologies used in the cluster. It is an
application program interface based on message passing
model. The main feature is that between different
processors, it uses the network to transfer messages to
achieve mutual communication, and completes the
synchronization between tasks. Message passing methods
is generally used in distributed storage structure. Because
the number of terrain points is very large, the original K-
means clustering algorithm needs to spend a lot of time to
calculate the Euclidean distance between each data point.
After research, it can be found that the distance between
each terrain point and the obtained terrain point as the
clustering center is independent of each other and does not
interfere with each other, so the algorithm can be
calculated in parallel. Therefore, this paper first divides
the original data into multiple sub-data blocks, and then
allocates each sub-data block to an independent processor,
and each processor only needs to calculate the distance
between the topographic point in the assigned sub-data
block and each cluster center separately, and then the
clustering result of the sub-data block processed by each
processor can be obtained. Finally, the global clustering
results are obtained by calculating the output results of
each processor through a method similar to the Reduce
function in MapReduce framework. The proposal of the
implementation of the parallelization of k-means
clustering algorithm based on MPI is mainly to use
master-slave mode. The task of the master node is to
divide and distribute data. The slave nodes are allocated to
with the local data to complete the calculation task and the
results are fed back to the master node. The process of
parallelization is as follows:
1)Assuming that the master node is process 0, the process
reads data from the file and allocates the data to other
processes.
2)The main process selects each cluster center and sends it
to other processes.
3)Other processes calculate the distance between each
point in the assigned data and the cluster center point,
mark the category of each point, and then calculate the
sum of the distances between each terrain point in each
class and the cluster center, and finally return the results
to the main process.
4)Process 0 calculates the new center point and sends it to
other processes, and calculates the sum of distances
between all terrain points in the class from other processes
and its center point.
5)Repeat step 3 and 4 until the sum of the distances of all
clusters in step 4 or the cluster center no longer change
(i.e. convergence).

B. Parallelization of terrain viewpoint sorting
OpenMP is a thread-based programming framework,

which is generally used in the parallel system of shared

120

memory. For a parallel program based on multithreading,
it is necessary to block and schedule the loops in the
program to better achieve load balancing, and ensure that
the CPU utilization is the highest and has been in a busy
state during most of the running time as long as possible.
At the same time, it minimizes various costs, such as
scheduling overhead, synchronization overhead and the
switching overhead between contexts, so as to optimize
performance. The parallelization of terrain point sorting in
each cluster adopts the static balanced scheduling strategy.
This part is to sort the quality of terrain points in each
cluster. Each cluster does not interfere with each other, so
the pragma instruction can be used to parallelize the
sorting process. In the OpenMP-based terrain point
sorting method, only clusters are partitioned. Each cluster
is processed by a single thread, and there is no
interference between clusters, so there is no shared
variable. Therefore, the pseudo code of the parallel
algorithm for sorting terrain point based on OpenMP is
shown as follows.

input K clusters
#pragma omp parallel for num_threads(n)
(n is the specified number of threads)
for i from 0 to (k-1)
{

compute viewshed quality of every viewpoint;
sort these viewpoints according to their viewshed quality;
}

C. Parallelization of terrain point filtering
In the process of terrain point filtering, the terrain

points in each filtering cluster may be moved to adjacent
clusters, and each cluster has strong correlation and poor
parallelism. When filtering terrain points, it is necessary
to calculate the viewshed quality of the viewpoint in the
adjacent clusters, which is also the most time-consuming
part in the whole filtering process. Therefore, this part can
use OpenMP to improve efficiency.

The calculation of viewshed quality involves the view
and view repetition of a single viewpoint. When
calculating the number of view repetitions, it is necessary
to calculate the joint view of multiple viewpoints. The
essence of this series of calculations is to calculate the
viewshed of a single viewpoint, and the viewshed of a
single viewpoint does not affect each other. Therefore,
after calculating the single point viewshed with parallel
computing mode, the main thread can calculate the
viewshed quality.

First, the parallel for statement is placed before
calculating the for loop in each view field. Parallel is used
in combination with the for instruction, representing
multiple threads to execute the code in the for loop in
parallel. It also has two functions: generating parallel
domains and assigning tasks. Since the viewpoint quality
needs to calculate the joint view, and every time a field of
view is calculated, the joint field of viewshed array V
must be changed at the same time. Therefore, in the case
of multi-threaded parallelism, the array V is a shared
variable. Where the shared clause in OpenMP is used to
modify V, the role of shared clause is to specify one or
more variables as shared variables between multiple

threads. Finally, after each thread completes the execution
task, the viewpoint quality formula is usd to calculate its
quality, because the time for each thread to complete the
task will be different, and the barrier is generally used to
synchronize the threads executing the code in the parallel
region. When each thread reaches the barrier instruction,
it needs to stop and wait until all other threads execute to
the barrier to continue to execute the remaining part.
Therefore, adding the #pragma omp barrier statement can
realize thread synchronization. The pseudo code of the
parallel calculation of viewpoint quality in the filtering
process is shown as follows.
Input: cluster C; single viewpoint p; Initialize the joint view
array V
pragma omp parallel for shared V
for i from 1 to N (N is the number of viewpoints in cluster C)
{

calculate the viewpoint of i;
modify array V from the perspective of view i
#pragma omp barrier

}
compute viewshed Vp of viewpoint P;
compute the overage ratio O according to Vp and shared
viewshed array V;
compute viewshed quality of viewpoint P according to O and Vp
of P.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The experiment compares the serial method with the
parallelization method, and verifies the computational
efficiency of the three parallel methods.
1)Experiment with k-means based on MPI
The experimental environment is two computers with
CPU@2.0GHz, and 4GB memory, and windows 10
system. A total of eight processes for the program are
started to run. The data adopts 1000*1000 digital
elevation model terrain with a resolution of 5 meters. In
order to compare, 10000, 100000, and 1000000 data
points were tested. The running time is shown in Table I.
Experimental result shows that the serial execution of K-
means algorithm takes the longest time. After paralleling
it with the MPI framework, the speed of data processing is
significantly improved. With the continuous increase of
the amount of data, the running time of serial algorithm
rises sharply, but it also reflects the advantage of parallel
computing. When the data sizes up to 10000, 100000 and
1000000, the running time of k-means based on MPI is
about 1 / 2,1 / 10 and 1 / 433 of that of the serial k-means
algorithm, and the speedups ratio reaches 2.0, 10.45 and
433.49 respectively. Thus, the efficiency of parallel
computing algorithm proves to be greatly improved.

TABLE I. Comparison of running time and accelerate rate
Data size 10000 100000 1000000
k-means 149ms 7982ms 3652168ms

k-means based on
MPI 75ms 764ms 8425ms

Accelerate rate 2.0 10.45 433.49
2)Experiment of terrain point sorting algorithm based on
OpenMP
Since the OpenMP parallel program design framework is
mainly to make full use of the CPU to accelerate the
calculation, the experiment is carried out on a computer

121

with CPU@2.0GHz and 4GB memory, and windows 10
system. 1000 selected terrain feature points are clustered
into 35, 45 and 65 classes as the experimental data. The
number of threads can be specified with num_threads in
OpenMP. The number of threads set in this experiment is
2 and 4, respectively. Table II shows the resulting
experimental running time of 35, 45 and 65 classes sorted
by serial and parallel methods.

It can be seen from table 2 that the use OpenMP to
parallelize the sorting of terrain points in the cluster based
on visual quality Index can improve the computational
efficiency. Sorting viewpoints in each cluster requires
many times of computations of the visibility of each
viewpoint in the cluster, so serial sorting takes a long time.
When sorting viewpoints in35, 45 and 65 clusters
respectively, the computation time of serial algorithm is
about 1.48, 1.52 and 1.55 times that of parallel computing
with two threads, and 2.69, 2.91 and 2.8 times that of
parallel computing with four threads. It can be seen that
the utilization of the CPU is significantly increased when
multithread parallel computing is enabled.

TABLE II. Comparison of running time
number of clusters 35 45 65

Serial algorithm 682s 649s 608s
Parallel algorithm with

two threads 458s 425s 391s

Parallel algorithm with
four threads 253s 223s 217s

3)Experiment on Topographic Point Filtering Algorithm
Based on OpenMP
The experiment is also carried out on a computer with
CPU@2.0GHz and 4GB memory, and windows 10
system. The experimental data are 35, 45 and 65 classes
that originate from terrain feature points on D1 terrain
after clustering and sorting operations applied. The
number of threads is also 2 and 4. Table III shows the
running time of serial candidate viewpoint filtering(CVF)
and parallel CVF algorithms. It can be seen from Table III
that using OpenMP to filter terrain points in parallel can
significantly shorten the calculation time. When filtering
terrain points, it takes the longest time to calculate the
quality of viewpoints. In this experiment, 35, 45 and 65
clusters are filtered respectively. From the running time
results, it is concluded that the time of serial computing is
about 1.55, 1.27, 1.69 times of the parallel computing
time when two threads are used, and 2.81, 2.8, 2.75 times
of the computing time when using four threads.

TABLE III. Running time of serial CVF and parallel CVF
cluster number 35 45 65

serial CVF 45s 14s 22s
parallel CVF with

two threads 29s 11s 13s

Parallel CVF with
four threads 16s 5s 8s

V. CONCLUSION

In this paper, the rapid filtering method of candidate
feature points with multiple viewpoints is parallelized step
by step. The k-means algorithm is mainly parallelized by
MPI framework, and using OpenMP is used to parallelize

the sorting of terrain points in each cluster and the final
terrain point filtering. Experiments show that the partial
parallelization of computing time can significantly shorten
the computing time and improve the computational
efficiency. The parallelization method is carried out step
by step, which is only suitable for candidate terrain point
filtering method. The future research direction is to find a
parallelization solution to make it suitable for various
problems of multi-viewpoint visibility.
FUNDING
This work is supported by the National Natural Science
Foundation of China [grant number 41771411].

REFERENCES

[1] Fisher P F. First Experiments in Viewshed Uncertainty: Simulating
Fuzzy Viewsheds[J]. Photogrammetric Engineering and Remote
Sensing, 1992, 58(3): 345-352.

[2] Pin L. Terrain Visibility Analysis Based on Line of Sight[J].
Computer Engineering and Applications, 2006, 42(8):223-226

[3] LEE J. Analyses of visibility sites on topographic surfaces[J].
International journal of geographical information systems, 1991,
5(4):413-429.

[4] Franklin, W.R., et al. Slope Accuracy and Path Planning on
Compressed Terrain in Headway in Spatial Data Handling[C]. 13th
International Symposium on Spatial Data Handling, Montpellier,
France, 23-25 July, 2008.

[5] Bao S., Xiao N., Lai Z., Zhang H., & Kim C. Optimizing
watchtower locations for forest fire monitoring using location
models[J]. Fire Safety Journal, 2015, 71: 100-109.

[6] Akella M. R., Delmelle E. M., Batta R., Rogerson P. A., and Blatt
A.. Adaptive Cell Tower Location Using Geostatistics[J].
Geographical Analysis, 2010, 42(3):227-244.

[7] Kammer F., Löffler M., Mutser P., et al. Practical Approaches to
Partially Guarding a Polyhedral Terrain[J]. Geographic
Information Science, 2014, 8728.

[8] Puppo E., & Marzano P. Discrete visibility problems and graph
algorithms[J]. International Journal of Geographical Information
Systems, 1997, 11(2), 139-161.

[9] Franklin W. R., Ray C. K., and Shashank M. Geometric
Algorithms for Siting of Air Defense Missile Batteries[OL].
Research Project for Battle 2756, 1994. http://www. ecse. rpi.
edu/Homepages/wrf/research/p/tec_report.pdf.

[10] Sorensen P. A. & Lanter D. Two algorithms for determining partial
visibility and reducing data structure induced error in viewshed
analysis[J]. Photogrammetric Engineering and Remote
Sensing.1993,59. 1149-1160.

[11] Wang J., Robinson G. J., White K. A Fast Solution to Local
Viewshed Computation Using Grid-Based Digital Elevation
Models[J]. Photogrammetric Engineering and Remote Sensing,
1996, 62(10):1157-1164.

[12] Yu T., Xiong L., Gao M., Wang Z., et al. A new algorithm based
on Region Partitioning for Filtering candidate viewpoints of a
multiple viewshed[J]. International Journal of Geographical
Information Science, 2016, 30(11), 2171-2187.

[13] Wang Y. W. & Dou W. F. A fast candidate viewpoints filtering
algorithm for multiple viewshed site planning[J], International
Journal of Geographical Information Science, 2020, 34(3): 448-463.

[14] Wu Y. L. An algorithm for computing viewsheds based on
reference planes[J]. Wtusm Bulletin of Science and Technology,
2001, 1 (6):19-21.

[15] Kanungo T., Mount D. M., Netanyahu N. S., Piatko C. D.,
Silverman R., & Wu A. Y. An efficient k-means clustering
algorithm: analysis and implementation[J]. IEEE Transactions on
Pattern Analysis & Machine Intelligence, 2002, 24(7):881-892.

[16] Kim Y. H., Rana S., & Wise S. Exploring multiple viewshed
analysis using terrain features and optimization techniques[J].
Computers & Geosciences, 2004, 30(9-10), 1019-1032.

122

