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Abstract—Neural network is used to fuse the spatial and 
channel information of each layer's local receptive fields to 
construct information features. But global long-range 
dependency is not effectively modeled, which leads to non-
optimal discriminative feature representations. In this paper, 
we propose multi-scale global channel network (MSGC). We 
use self-attention mechanism to combine local features with 
their corresponding global dependencies, adaptively
recalibrate the channel response, guide the network to ignore 
irrelevant information, and emphasize the correlation of 
relevant features. We evaluated the proposed method on 
BSDS500 dataset and NYUD dataset. MSGC achieves ODS F-
measure of 0.815 on BSDS500, which is 0.9% higher than the 
existing technology.

Keywords-Convolutional Neural Networks; Deep learning;
Edge detection; Deep attention; Self-attention

I. INTRODUCTION

Edge detection aims to extract perceptually salient edges 
of natural images, which is important to high level computer 
vision tasks, such as image segmentation [1], [2], object 
detection/recognition[3], [4].

The early traditional methods include Sobel detector [5],
widely used Canny detector [6],Structured Edges [7] and gPb 
[2].  CNN is used for edge detection, including DeepContour
[8] and CSCNN [9]. HED [10] and RCF [11] supervise the 
predictions of different network layers. Richer convolution 
features are very effective for many visual tasks, but HED 
and RCF still do not explicitly use global context 
information, and do not directly impose constraints on 
adjacent pixel labels to enhance depth supervision. Therefore, 
we can improve the quality of network representation by 
explicitly modeling the dependency of channels. 

Because convolution layer establishes the pixel 
relationship in the local neighborhood[12],[13], the modeling 
of long-range dependency is invalid. We add features of all 
positions to the features of each location.

II. RELATED WORK 

This paper mainly studies edge detection and deep
attention. We briefly review the related work in these two 
aspects.

A. Edge Detection 
Edge detection is one of the most basic and challenging 

problems in computer vision. 
These methods can be roughly divided into three 

categories: traditional edge operators, learning based 
methods and deep learning based methods. The traditional 
edge operator detects edges by detecting abrupt changes in 
intensity, color and texture. Sobel [5] applied thresholding 
the gradient of the image. The learning based method uses 
hand-crafted features. Arbeláez et al. [1] combined local 
clues into a global framework. In recent years, advanced 
results have been obtained by using deep learning to extract 
depth features automatically. Xie and Tu [10] proposed an 
end-to-end model for in-depth monitoring different scale 
features of side outputs. Liu et al. [11] connected the side 
outputs to all the convolution layers of VGG16 [14]. MSGC
is based on RCF [11]. The above training strategy does not 
explicitly use context information and impose constraints on 
adjacent pixel labels. We use global features to enhance 
context modeling for multiscale side outputs.

B. Deep Attention
The attention mechanism aims to emphasize the 

important areas and filter irrelevant information. It has been 
successfully applied to various visual tasks, such as 
classification [15] and detection [16]. PSANET [17]
adaptively linked each location in the feature map with other 
locations. Senet [13] and Genet [18] recalibrated channel 
dependencies by rescaling different channels. However, the 
feature fusion method is not effective enough. In this paper, 
addition fusion is used to model the global context more 
effectively.
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III. METHODS 

A. Overview 

Figure 1. The architecture of MSGC.

VGG16 network is composed of 13 convolution layers, 3 
fully connected layers and 5 downsampling layers. We make
following changes to VGG16: (1) because the fifth pooling 
layer produces a too fuzzy prediction map to be used, the 
fifth pooling layer and all fully connected layers are 
discarded, (2) a downsampling layer is connected to each 
convolution layer to extract different scale features, (3) fuse 
the multiscale features of each stage, then the deconvolution 
layer up-sample the fused features, (4) a  convolution layer is 
used to fuse the side outputs. 

Let X,Y denotes one sample of input training data 

set T , where , 1, ,| |iX x i X is a raw input 

image and Y={y ,i=1, ,|X|}i , y {0,1}j is the 
corresponding ground truth edge map. The training loss for 
every image is formulated as
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, +Y and -Y denote 

the edge and non-edge ground truth label sets respectively ,
is to automatically balance the loss between 

positive/negative classes, and W denotes all the network 
layers parameters. The final loss can be obtained by further 
aggregating these generated edge maps, i.e.,
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where jX denotes the edge map of stage j and 
fuseX denotes the edge map of fusion layer.
Traditional CNNs has a local receptive field, so the 

generated local features may cause potential differences 
between features of pixels with the same label. We study the 
self-attention mechanism of establishing association between 
features. First, the global context information is captured. 
Then, the learned global features are input into the channel 
self-attention module. The self-attention module helps to 
adaptively combine local features with their global context, 
and can gradually filter out noise by emphasizing useful 
information. The overview of the proposed architecture is
depicted in Figure 1. 

B. Global Channel Self-attention Modules (GCM)

Figure 2. Architecture of the GCM.

Firstly, we use 1 1 convolution WG and softmax 
function to obtain attention weights, and compute a global 
context attention map S. Then we recalibrate the channel 
response through 1 1 convolution Wc. Finally, we 
aggregate the global context features to the features of each 
location by addition. We use U={u ,n=1, ,N}n as an input 
feature map, where N=H W is the number of positions in 
the feature map. Our global attention map is formulated as 
follows:

1

f ( )S=
( )

N
n

n
n

u u
C U

, (3)

where n lists all possible locations, uf ( )=e g nW
nu is an 

embedded Gaussian function to calculate the similarity in 

the embedding space, u

m 1
( ) e g m

N
WC U is a normalization 

factor.
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In order to make the GCM lightweight, we use the 
bottleneck transform module. We add layer normalization in 
bottleneck transformation before ReLU layer to simplify 
optimization, and also play the role of regulation, which is 
illustrated in Figure 2. We denote Z={ , 1, ,nz n }N as
the output feature maps of our attention module, the 
complete GCM can be expressed as:

2 1z Re ( ( ))n n C Cu W lu LN W S . (4)

IV. EXPERIMENTS

A. Datasets
BSDS500 contains 200 training, 100 verification and 200 

test images. We expanded the training set and verification set 
with rotation, flipping, scaling. We mix the enhanced data of
with the flipped Pascal VOC context dataset [19] as training 
data with 49006 training.

The NYUD [20] dataset consists of 1449 pairs of aligned 
RGB and depth images. We only use the RGB part. We split 
the NYUD dataset into 381 training, 414 validation, and 654 
test images[21], and expand them by randomly flipping, 
scaling and rotating.

B. Implementation Details
We implement MSGC using PyTorch. The VGG16

pretrained on ImageNet [22] is used to initialize MSGC. The 
threshold λ used for loss computation is set as 1.1 and 1.2 for 
BSDS500 and NYUD dataset, respectively.

SGD optimizer randomly extracts 10 images in each 
iteration, and the global learning rate is set to 1e-6, which 
decreases 10 times after every 10K iterations. Momentum 
and weight decay are set to 0.9 and 0.0002, respectively. We 
do a total of 40K iterations. All experiments in this paper are 
performed with NVIDIA 1080 GPU.

Before evaluation, we used non-maximum suppression
(NMS) to refine the edge. The maximum allowed tolerance 
between edge predictions and ground truth for BSDS500 and 
NYUD dataset are set to 0.0075 and 0.011 respectively.

C. Comparison with Other Works
Performance on BSDS500 Our experimental results 

with several state-of-the-art edge detection networks on
BSDS500 are summarized in 0 and Figure 3. 

Figure 3. The p-r curves of MSGC and other works on BSDS500 dataset.

TABLE I. The comparison with other methods on BSDS500 dataset. 
+indicates trained with additional PASCAL VOC Context dataset.

As shown in the results, GCM can actually improve the 
performance of edge detection. Figure 4. shows a
comparison of edge maps from MSGC and RCF before 
NMS. MSGC can effectively eliminate most of the blurred 
and noisy boundaries and produce clearer image edges.

Figure 4. Comparison of edge maps before NMS on BSDS500 dataset. 

Figure 5. The p-r curves of MSGC and other works on NYUD dataset

Methods ODS OIS AP
Human 0.803 0.803 -

Canny [6] 0.611 0.676 0.520
SE [7] 0.743 0.763 0.800

OEF [23] 0.746 0.770 0.820
DeepEdge [6] 0.753 0.769 0.784

DeepContour [27] 0.757 0.776 0.790
HFL [29] 0.767 0.788 0.795
HED [10] 0.788 0.808 0.840

CEDN+ [25] 0.788 0.804 -
RDS [29] 0.792 0.810 0.818
RCF [11] 0.798 0.815 -
RCF [11]+ 0.806 0.824 0.840

DeepBoundary [27] 0.789 0.811 0.789
DeepBoundary+

[27] 0.809 0.827 0.861

MSGC 0.805 0.822 0.834
MSGC+ 0.815 0.834 0.866

y p g g
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TABLE II. Comparison with other methods on NYUD dataset.

Performance on NYUD TABLE II. and Figure 5. 
show the quantitative results of MSGC compared with 
several recent methods. MSGC achieves the best 
performance of ODS F-score 0.741, which proves the 
effectiveness of MSGC.

V. CONCLUSION

In this paper, we introduce a deep attention architecture 
to complete the edge detection task. It combines different 
levels of global information with GCM to model long-range
dependency effectively. Finally, a dynamic channel-feature
recalibration is performed to filter the noisy regions and help 
the network focus on the relevant areas in the image. MSGC
is compared with more than 10 edge detection methods on 
BSDS500 dataset and NYUD dataset, and MSGC provides 
accurate and reliable edge detection.
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