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Abstract—Driven by the development and application of
smart grid and renewable energy sources (RES) genera-
tion technologies, microgrid (MG) plays an important role
in environmental protection and optimization of the grid
structure by integrating local loads and distributed energy.
However, the stochastic and intermittent nature of RES have
caused difficulties in the economic energy dispatching of
MG. Inspired by reinforcement learning (RL) algorithms,
this paper proposes a novel learning-based control MG
scheduling strategy. Unlike traditional model-based methods
that require predictors to estimate stochastic variables with
uncertainties, the proposed solution does not require an
explicit model. The proposed method is simulated in the
environment composed of realistic data, and the effectiveness
of the method is explained and verified.

Keywords-control policy; energy management; microgrid;
deep reinforcement learning;

I. INTRODUCTION

Increasingly environmental concerns and flexible trad-

ing mechanism have brought new development opportuni-

ties and challenges to the operation mode and dispatching

strategy of power system. RES as a new energy form

to solve energy crisis and environmental problems, has

spawned the model of MG which consists of distributed

energy, energy storage, and load. The balance between

the generating side and the consuming side has always

been one of the main problems in power grid energy

management. However, due to the inherent stochastic and

intermittent nature of various RES and the uncertainty of

users’ electricity consumption behaviors, the dispatching

of MGs has greater stochastic than that of traditional

power grids, which is the reason why MGs are usually

equipped with an energy storage system (ESS). Mean-

while, the excessive imbalance between supply and de-

mand will consume more reserve and ancillary equipment

to ensure the normal operation of the MG, which will

significantly reduce its economy[1]. Therefore, it is urgent

to carry out an effective energy management strategy to

make the economic dispatching.

ESS can not only generate and absorb energy to buffer

the flow of energy, but also optimize the power quality

and improve the stability of micro-grid, which is the

key component of energy dispatching. Traditional control

strategies require explicit modeling of microgrids and the

optimal strategy is obtained by a solver. For instance, the

model predictive control (MPC) has strong robustness due

to its predictive and feedback correction ability, and can

be effectively applied to the control of complex industrial

processes. In [2], an offline algorithm was designed by

combining offline solution with sequential optimization

based on sliding window. In [3], the strategy of combin-

ing optimal generation scheduling with MPC to achieve

long-term and short-term optimal planning was proposed.

Although the model-based method has advantages and

successful applications in the above work, it relies heavily

on domain expert knowledge to build MG models and

parameters. In addition, complex model with optimiza-

tion process also bring computational burden in real-

time fashion [4]. Motivated by the recent development of

reinforcement learning (RL), this paper proposes a model-

free strategy for real-time energy dispatching of ESS in

MG. It does not need accurate modeling of MG, and

can be used for real-time dispatching once the training

is completed, which has strong portability [5].

II. PROBLEM FORMULATION

A. Microgrid Model

1) MG Architecture: Fig. 1 illustrates the microgrid

architecture we discussed which consists of a photovoltaic

(PV) system, a wind turbine (WT), a battery pack as the

energy storage device, a group of local demands, and a

main grid connected by point of common coupling (PCC).

It should be noted that the purpose of using this microgrid

model is to briefly illustrate the proposed control strategy,

which can be applied to more complex circumstances due

to the portability of data-driven methods.

Figure 1. MG architecture includes RES generators, ESS and local
load, and is connected to the main grid via PCC.

2) Battery Model: For ESS, We denote the charging or

discharging power of the battery at time slot t by Pb(t).
Positive Pb(t) means battery charging and negative Pb(t)
means discharge. Therefore, the dynamic characteristics of

ESS can be expressed by:

E(t+ 1) =

⎧⎨
⎩
E(t) + ηchargePb(t)Δt, Pb(t) > 0

E(t) +
Pb(t)

ηdischarge
Δt, Pb(t) < 0

(1)
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Where, E(t) represents the energy in the ESS at time

t, Δt represents the time interval of each scheduling,

and ηcharge and ηdischarge represent the charging and

discharging efficiency respectively.

Moreover, the ESS operating parameters, i.e. power and

state of charge (SoC), should not exceed the set maximum

value, and the constraints are given by:{
SoCmin ≤ SoC(t) ≤ SoCmax

|Pb(t)| ≤ Pmax(t)
(2)

3) RES model: We assume that there are multiple

distributed generators composed of viable RES in the MG.

In the above MG structure, PV and WT are used as local

energy supply. For each RESi, i ∈ D, the generation

pattern is uncertain, and its generation power is bounded

by:

Pimin ≤ Pi(t) ≤ Pimax, ∀i ∈ D (3)

The electricity generated by RES should be maximized

to meet the local demand first. If there is excess power,

it can be stored in the ESS for subsequent needs. Since

the installation costs of distributed generators and auxil-

iary equipment are paid in a lump sum at the time of

installation, and its operation and maintenance costs are

relatively small, the generation costs of RES are ignored

in this paper.

4) Main Grid Model: In our MG settings, users can

pay to get electricity from the main grid if the electricity

generated by RES and ESS cannot meet the local demand.

The electricity price adopts real-time price (RTP), which

means that the control strategy needs to charge and dis-

charge ESS reasonably to maximize the use of RES and

reduce the cost of purchasing electricity. At each time slot,

the total cost of purchasing power from the main grid can

be expressed as:

C(t) = γ(t)Pg(t)Δt (4)

Where, Pg(t) and γ(t) are respectively the the power

exchange and RTP at time t.

B. Reinforcement Learning

This paper addressed the model-free method based

on RL to solve the energy dispatching of ESS as the

sequential decision-making problem. RL problems can

be expressed as a Markov decision process (MDP), in

which the agent learns continuously in interaction with the

environment and finally gets the optimal strategy. At each

time step, after getting the information passed by the envi-

ronment, the agent selects the action value at ∈ A under

the current state st ∈ S according to strategy π, while the

environment gives the environment state st+1 and reward

value rt+1 ∈ R for the next time step according to the

transition probability p(st+1, rt+1 | st, at).
Solving an RL task means figuring out a strategy that

will yield substantial benefits over the long term, which in

the microgrid paradigm means minimizing the cost within

the total dispatch time horizon. We use a value-based

RL method, which uses a value function to evaluate the

performance of strategy π. The value function is defined as

the expected value of subsequent rewards with a discount

factor:

Q(s, a) = Eπ

[ ∞∑
k=0

γkrt+k+1 | st = s, at = a

]
(5)

Where, the discount factor γ ∈ [0, 1], the closer its value

is to 1, the more consideration will be given to future

rewards. In other words, the agent becomes more far-

sighted.

1) State Space: During the operation of the MG, the

operator of the control center monitors the state of the

MG in real time through the Supervisory Control and Data

Acquisition (SCADA) system. External environmental in-

formation, such as RES generation, local load and RTP,

is the main factor leading to the power imbalance of the

microgrid, so they are the main basis for decision making.

In addition, the SoC of the ESS and the hour of the day

γ(t) are also considered in the state space. The state space

is defined as follows:

st = (PPV (t), PWT (t), PL(t), SoC(t), γ(t), h(t)), st ∈ S
(6)

where,∀t ∈ {0, 1, . . . , T − 1}, T is the total schedul-

ing time period. PPV (t) and PWT (t) are respectively

PV and WT power generation, PL(t) is load power.

h(t) ∈ {1, 2 · · · , 24} represents the time information of

the scheduling.

2) Action Space: At each dispatch moment, the agent

can make decision instructions to ESS based on the state

information of the MG. There are three possible actions in

the action space, namely idle, charging and discharging,

which are expressed as:

A = {0, 1, 2} (7)

When the charging command is issued, the ESS will

absorb the excess power generated by the RES generators

as much as possible. When the local power supply is

insufficient, the ESS will choose whether to discharge to

make up for the lack of energy. The idle command allows

the ESS to save the existing power for subsequent use.

3) Reward Function: In the RL paradigm, the rewards

are transferred from the environment to the agent, which is

used to convey the goals that the control strategy wants to

achieve. At each time step, the agent receives the reward

value given by the MG environment for buyiny electricity

from the main grid:

rt = −C(t) = −γ(t)Pg(t)Δt (8)

4) Deep Q Network: Common table-based reinforce-

ment learning methods will suffer from ”curse of di-

mensionality” when facing high-dimensional state and

action spaces, which increases the difficulty of computing.

Through the powerful feature extraction ability of deep

learning (DL), artificial neural network (ANN) can be

applied to nonlinear approximation of value function [6].

We use a multi-layer full connection layer neural network
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to fit the optimal value Q∗, with Q∗ satisfying the Bellman

optimality equation:

Q∗(s, a) = r + γmax
a′∈A

Q∗(s′, a′) (9)

Finally, the optimal strategy π∗ is obtained:

π∗(s) = argmax
∀a∈A

Q∗(s, a) (10)

III. CASE STUDY

Since the prediction of the information before the day

is beyond the scope of this work, we assume that the

predicted value of the external state will be obtained

before the actual scheduling one day ahead. The prediction

information is used to train the model every day, and the

trained model can be used for real-time scheduling of

the next day. For each model training, a day is divided

into 48 time slots, and RTP are based on real historical

data. Moreover, RES generation and user load demand

are obtained from real historical data after scaling [7], as

illustrated in Fig. 2. For ESS, the maximum capacity is

set to 2.4MWh. SoCmax is 0.9 and SoCmin is 0.2. The

maximum charge and discharge power is set to 400kW.

The charging efficiency ηcharge is 0.9, and the discharging

efficiency ηdischarge is 0.89. We use an ANN with two

hidden layers to approximate the Q value. The two hidden

layers have 500 and 200 neurons respectively, and they

both use the Relu function as the activation function.

Figure 2. Adopted RTP and RES generation profile for real-time
scheduling.

RL algorithms continuously train one day’s forecast

data as an episode. Initially, the environment is ran-

domly explored and the experience gained is stored in

the experience pool. Afterwards, we constantly update Q

network through learning, and continuously reduce the

exploration of random actions during the training process,

and finally take the optimal action completely. We used

different random number seeds for multiple training. After

800 episodes of training, the total reward converged, as

shown in Fig. 3. For the first 200 episodes, all the action

values are random for environment exploration. After 640

episodes, the selection of random actions is turned off, and

the algorithm finally converges.

Figure 3. The change of total rewards after training under different
random number seeds with training episodes.

We use the trained agent for real-time scheduling under

real data. Fig. 4 shows scaling action value and the curve

of ESS’s SoC during this day and Fig. 5 shows the energy

flow. The upper part of the figure shows the energy supply,

which is composed of RES generations, ESS discharges

and main grid power purchase. The lower part of the figure

shows the dynamic changes of load and ESS charging with

time.

Figure 4. The action value given by the agent and ESS’s SoC during
the scheduling process.

Based on the analysis of the two figures, at the be-

ginning of the day, the power generation of RES cannot

meet the local load demand, so ESS discharges to make

up for the insufficient power supply. However, the power

initially stored in the ESS is still insufficient, and has

reached the minimum SoC of the battery, so users need to

purchase additional power. The reason why the electricity

purchase behavior is concentrated in the 6-11 time step

is because the RTP is low at this time. It can be seen

from the figure that the amount of electricity generated

by RES generators is more in the middle of this day.

At this time, the control strategy chooses to charge the

ESS until it reaches the maximum SoC for subsequent use

of electricity. In the following time, the optimal strategy
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Figure 5. Distribution of energy supply and energy demand during the day’s scheduling. The upper and lower parts of the figure represent the
different proportions of supply and demand.

will be able to discharge the ESS when the user needs

additional power, and charge when the local energy is

abundant.

IV. CONCLUSION

This article proposes a learning-based MG energy real-

time scheduling strategy to cope with the dilemma of tra-

ditional model-based control methods in the face of uncer-

tainties in new energy generation. Under the reinforcement

learning paradigm, by setting the power purchase cost

of the MG as a reward for each step of scheduling, the

agent can learn the optimal strategy to achieve the goal of

minimizing the operating cost of the MG and maximizing

the use of local RES in the long term. The simulation

results verified on the real data of one day show that,

under the model trained the previous day, the charging and

discharging instructions issued by the agent can effectively

improve the local energy utilization efficiency, give full

play to the peak load shaving ability of the ESS, and

reduce the additional power purchase cost of the MG

operation. In future work, we will consider the use of

effective prediction methods to predict the state of the MG

and incorporate it into a reinforcement learning framework

to enhance its robustness. And a more flexible electricity

price transaction mechanism will be considered in the MG

environment.
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