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Abstract This paper presents an energy collaborative 
optimization management for an energy storage system 
(ESS) of virtual power plant (VPP) based on model 
predictive control (MPC). This method uses long-short 
term memory (LSTM) neural network to obtain the one 
hour-ahead forecasting information for the load, the 
generation of wind and photovoltaic within the 
jurisdiction of VPP. With the minimum economic cost of 
VPP as the optimization goal, the optimal scheduling is 
solved by an improved particle swarm optimization (PSO) 
algorithm in the concept of the MPC framework. Through 
the comparison with the conventional VPP optimization 
solution, the numerical results clearly demonstrated that 
the proposed method improves the utilization of 
distributed generators (DGs) and reduces the impact of 
prediction errors on the optimization results. 

Index Terms—Virtual power plant (VPP); Model predictive 
control (MPC); particle swarm optimization (PSO) 
algorithm. 

I.  INTRODUCTION 
In recent years, the proportion of distributed 

generators (DGs) represented by renewable energy (e.g. 
photovoltaic, wind turbines) connected to the power grid 
has increased [1]. However, randomness and 
intermittency are their salient features. To reduce their 
impact on grid operation, the concept of virtual power 
plant (VPP) was proposed. VPP is a virtual system that 
effectively integrates DGs, energy storage system (ESS), 
and controllable load within its jurisdiction, connected to 
the power grid as a whole to improve economic benefits. 
It can coordinate the distributed units to both control the 
transmission power and achieve an appropriate 
allocation of resources [1]. 

The energy scheduling problem of VPP usually 
comes down to the offline optimization and open-loop 
control. The traditional scheduling method is based on 
the predictions of the load and DGs’ outputs, and all the 
optimal scheduling of each unit at each time are 
delivered in the offline stochastic optimization process. 
Its premise is to assume that the predicted values are 
accurate. However, this is difficult to achieve in practice, 
because of the uncertainty of load, intermittency and 
fluctuation of DGs. When accurately predicted values 
can be obtained, optimal decisions can be better 
arranged to improve the overall economic benefits of 
VPP, so improving the accuracy of prediction is one of 
the directions to solve the problem. Another direction is 
to develop online algorithms to solve the energy 

scheduling problem in real-time. These methods do not 
have high requirements for prediction with some 
simplifications of the system model or optimization 
process, which both meet real-time requirements and 
obtain relatively satisfactory solutions. 

Model predictive control (MPC) is a model-based 
algorithm for closed-loop optimal control in a finite time 
domain [2]. Its basic framework includes three parts: 
predictive model, rolling optimization, and feedback 
correction. The rolling optimization uses measured 
information for feedback, forming a closed-loop 
optimization and improving its performance. In this 
MPC-based solution for the energy scheduling of VPP, 
the optimization process is non-convex caused by the 
complexity and nonlinearity of the system model. The 
meta-heuristic algorithm [3-4] is regarded as an effective 
technique to solve complex optimization problems in a 
short time. So this paper will use an improved particle 
swarm optimization (PSO) [5] algorithm to solve the 
model. 

In this paper, the long-short term memory (LSTM) 
neural network is used to predict the load demand, 
generation of wind turbine and photovoltaic generator of 
the next hour. Then the PSO algorithm is used to solve 
the MPC-based VPP energy scheduling problem. With 
simulation results compared to the traditional method, it 
is verified that the proposed method improves the 
utilization rate of DGs and reduces the impact on the 
public grid. Fig. 1 illustrates the structure of VPP studied 
in this paper. It includes load, small thermal unit (SMU), 
wind turbine, photovoltaic generator and VPP dispatch 
center. 

VPP dispatch center

PV source Wind turbine

Loads

SMU
ESS

Public Grid

VPP

Fig. 1 Illustration of a typical VPP 

II. SYSTEM MODELING 

A. Using LSTM Neural Network for Prediction 

To obtain high-precision predicted data, this paper 
uses the LSTM neural network, which is considered to 
be a variant of recurrent neural network (RNN). LSTM 
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is composed of an input layer, hidden layer and output 
layer [6]. The network and unit structure are explained 
in [7]. One year of historical data, whose time interval is 
5 minutes, is used to enable the network to learn 
dependencies between time series. The time scale of 
prediction is 1 hour with a resolution of 15 minutes. At 
every predicted time, the input to LSTM is the actual 
value within 2.5 hours before it and the output is the 
predicted value 1 hour after it. 

B. Optimization Goals and Constraints 

Once the forecast data for dispatch is obtained, the 
optimization model needs to be established to determine 
optimal scheduling values, that is, the output of STU and 
ESS, electricity purchased from the public grid. 
a. Optimization Goal 

The VPP operation scheduling cost minimization is 
considered as the optimization goal, described as follows: 

( )min  d ess grid d ess gridCost P ,P ,P ,M = Cost +Cost +Cost    (1) 
where M is the number of optimized periods, here 

taking 4; 
dCost  is the power generation cost of SMU; 

essCost  is the dispatching cost of ESS; 
gridCost  is the 

cost of purchasing electricity from the public grid. The 
formulas are as follows  
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where ,1 ,2c ,d dc  is the primary and secondary cost 
coefficient of power generation of SMU; ,1 ,2,ess essc c  is 
the primary and secondary cost coefficient of ESS;

( )EP k is the ToU (time of use) electricity price. 
b. Constraints 

Constraints include power balance, unit output limit, 
and ESS' state of charge (SoC, which is current storage 
capacity as a percentage of maximum capacity). The 
formula is as follows: 
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where ( )windP t  and ( )pvP t are the output power of 
wind turbine and photovoltaic generator at time t; 
similarly, ( )loadP t  is the demand of load; ( )dP t  is the 
output power for SMU; ( )essP t  is the output power of 
ESS, which is controlled by VPP’s control center; it is 
positive for discharging and negative for charging; 

( )gridP t  is the exchange power between VPP and the 
public grid, and the positive value represents the 
purchase of electricity from public grid while the 
negative value represents the sale of electricity to the 

public grid; ,min ,max,d dP P  are the lower and upper limit 
of the output power of SMU respectively; ,min ,max,ess essP P
are the lower and upper limit of the output power of 
ESS respectively; min max,SoC SoC  are the lower and 
upper limit of SoC respectively. 

C. Particle Swarm Optimization (PSO) Algorithm 

Among meta-heuristic algorithms, particle swarm 
optimization (PSO) algorithm has attracted much 
attention because of simple and powerful performance. 
PSO is a group-based search algorithm. The overall size 
of the particles represents the solution space, and each 
solution is represented by a particle of the group, that is, 
each high-dimensional particle encodes a set of decision 
variables. 

In PSO, the optimal solution path of each particle is 
called its local optimal solution (pbest). It is searched to 
obtain the globally optimal solution (gbest). Particles 
have two properties: position and velocity, whose 
definitions and update formulas are given in (4). By 
iterating and updating the position and velocity of 
particles, the optimal solution that meets the termination 
condition of iteration is obtained. 

( )1 1 1

2 2

1 1

...
( )

i i i i

i i

i i i
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c rand gbest x
x x v

+

+ +
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where ix is the position of particles; iv is the 
velocity of particles; 1 2,rand rand are two random 
numbers between 0 and 1; 1 2,c c are learning factors, 
which often take 2; ω is the inertia factor, which 
usually takes non-negative values. The larger ω  helps 
global optimization while the smaller one helps local 
optimization. Instead of a fixed value, the dynamically 
changing ω  can improve the optimization effect, so the 
linearly decreasing weight (LDW) strategy in (5) is used. 

( ) int( )( )t end iter
end

iter

N
N

ω − ω − τ
ω = − ω (5) 

where int , endω ω are the inertia factors at the start and 
end; τ  is the current iteration number; iterN  is the 
maximum iteration number. 

D. Model Predictive Control (MPC) 

MPC is a closed-loop optimal algorithm in the finite 
time domain. It can overcome the difficult problems 
such as time-varying and non-linearity of parameters 
that general methods cannot solve. The basic framework 
of MPC is as follows: 
(1) Prediction model: it refers to the function of 

predicting the system’s future state. MPC focuses 
on the function rather than the form. 

(2) Rolling optimization: considering the prediction 
error, the optimization process of MPC is not done 
offline, but repeatedly online. Specifically, at each 
optimization moment, the optimal decision variable 
sequence in the future is solved. But only the first 
value in the optimal sequence is executed, and the 
above process is repeated at the next optimized 
moment. 
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(3) Feedback correction: as the actual values of the 
predicted object will not be completely updated 
according to predicted values, it is necessary to 
constantly revise some iteration variables according 
to measured values during the optimization process 
so that the rolling optimization process of MPC can 
effectively use the measured information, making 
the optimization process a closed loop. 

E. Proposed algorithm  

Fig. 2 shows the algorithm flow proposed in this 
work and the detailed steps are described as follows: 

Start

Initialize SoC of  
ESS. Let t = 1.

Obtain the forecast data.

Solve the optimal decision 
variable sequence within 1 hour.

t=N ? Update  SoC of ESS with  
measured values. Let t = t+1.

No

Yes

End  
Fig. 2 Proposed algorithmic solution 

Step 1: Let scheduling time t=1 and divide a day into N 
(N=96) scheduling times, that is, optimize every 15 
minutes. SoC of ESS will be updated at every optimized 
scheduling moment and will affect the optimal 
scheduling decision. SoC is usually initialized to 0.5 
before the start of the day's scheduling. 
Step 2: Obtain the forecast data of load, wind power and 
photovoltaic output. 
Step 3: Perform optimization. The goal is to minimize 
the overall scheduling cost at the subsequent 4 moments. 
The sequence of optimal decision variables is shown in 
Eq. (6), solved by PSO algorithm based on the predicted 
data : 
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Step 4: Use the first value of the sequence in (6) as the 
dispatched value. 
Step 5: Update the SoC of ESS. According to the power 
balance condition in (3), SoC can be calculated before 
the next optimization time, as shown in the following 
formula: 

( 1) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

ess

ess load wind pv d grid

ESS t ESS t P t
P t P t P t P t P t P t

+ = +
= − − − −

(7)

where ( )ESS t  is the storage capacity of ESS. Eq. (7) 
will be used in PSO iteration based on predicted values 
whose purpose is to determine whether SoC exceeds the 
limit. Here measured values are used to update SoC of 
ESS. This makes the rolling optimization of the next 
scheduling time using measured information, thus 
reaching a closed-loop optimization and improving 
performance of optimization. 

Step 6: Let t=t+1, then repeat step 2-6 until t=N. The 
optimal dispatch value of ( ) ( ) ( )d ess gridP t P t P t  is 
gradually completed and the optimal energy dispatch for 
VPP is realized. 

III. SIMULATION EXPERIMENTS AND RESULTS 
This section adopted the one-year data 

measurements of a certain area to evaluate the 
performance of the proposed algorithmic solution 
mainly from two aspects, i.e. the DG utilization 
efficiency and the impact reduction on the public grid. 
Table I shows the values of the parameters used in this 
simulation. Fig. 3 and Fig. 4 show the ToU electricity 
price and the predicted and real data, respectively.  

TABLE I VALUES of PARAMETERS 

minSoC  maxSoC  ,mindP  ,maxdP  ,minessP  ,maxessP  

0.1 0.9 100kW 500kW 250kW 1000kW

,1cd  ,2cd  ,1cess  ,2cess  intω  endω  

0.00015 0.58 0.00015 0.57 0.9 0.4

iterN  number of particles dimension of particles 

500 100 8

 
Fig. 3 ToU electricity price 

 
(a) 

 
(b) 

 
(c) 
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Fig. 4 Predicted data. (a) load demand; (b) output of wind turbine; (c) 
output of the photovoltaic generator 

Fig. 5(a) gives a comparison of the output of SMU. 
With MPC, the power generation of SMU is increased, 
which increases its utilization rate. A comparison of the 
output of ESS is demonstrated in Fig. 5(b). ESS is 
charged when electricity demand is low or electricity 
prices are low and discharged when electricity demand 
is high or electricity prices are high. This helps to reduce 
the amount of electricity purchased from the public grid, 
thereby reducing the overall dispatch cost. At the same 
time, MPC will extend the charging time of ESS to be 
able to output more electricity during peak electricity 
demand in the afternoon. 

Fig. 5(c) presents the changes in the energy storage 
capacity of ESS. MPC makes the usable interval of ESS 
larger, which improves economic benefits. The charging 
and discharging conditions are relatively gentle, which is 
more conducive to extending the life of ESS. 

Fig. 5(d) shows the exchange power between VPP 
and the public grid. Both scheduling methods can play 
the role of "peak clipping and valley filling". During the 
two peak periods of electricity demand (noon and about 
8 pm), MPC significantly reduces the electricity 
purchased from the public grid and increases the 
electricity purchased during the low period of electricity 
demand (late night) and staggers the peak period of the 
electricity demand of VPP and the public grid. Also, 
VPP can sell the surplus generation to the public grid 
during the low electricity demand period (early 
morning), which can also reduce dispatch costs. MPC 
increases the amount of electricity above. Overall, MPC 
can smooth the power exchange curve between VPP and 
the public grid and reduces the impact on the public grid. 

 
(a) 

 
 (b) 

 
(c) 

 
(d) 

Fig. 5 Performance evaluation: (a) output of SMU; (b) output of ESS; 
(c) energy storage capacity of ESS; (d) exchange power curve 

IV. CONCLUSION 
This paper presents an energy collaborative 

optimization control method for VPP-ESS based on 
MPC. This method uses the prediction data from the 
LSTM neural network to establish the energy scheduling 
model of VPP based on MPC, which is solved by an 
improved PSO algorithm. In the case of errors in the 
prediction data, this method uses the measured 
information for feedback, which makes the optimization 
process a closed-loop and reduces the impact of 
prediction errors on optimization. The simulation results 
verify that this method improves the utilization rate of 
DGs, smooths the power exchange curve, and reduces 
the impact on the public grid. 
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