
Discriminant-sensitive locality canonical correlation analysis for joint dimension 
reduction 

Shuzhi Su 
School of Computer Science and 

Engineering 
Anhui University of Science & 

Technology 
Huainan, China 

sushuzhi@foxmail.com 

Penglia Gao 
School of Computer Science and 

Engineering 
Anhui University of Science & 

Technology 
Huainan, China 

AUSTartificial_Gao@163.com 

Yanmin Zhu  
School of Mechanical 

 Engineering 
Anhui University of Science & 

Technology 
Huainan, China 

Zyanmin1988@163.com 

Abstract—Canonical correlation analysis (CCA) has been 
known as a representative joint dimension reduction of multi-
modal material. However, CCA fails to capture nonlinear 
discriminant structures hidden in original high-dimensional 
multi-modal material. To address this issue, we propose a novel 
unsupervised joint dimension reduction method called 
discriminant-sensitive locality canonical correlation analysis 
(DLCCA). The method embeds the locality-based discriminant 
structures into the between-modal correlation and the within-
modal scatters. The low-dimensional nonlinear correlation 
features characterized as great discrimination can be well 
extracted by the method in the unsupervised cases. The 
experiments of face and handwritten recognition has proved the 
effectiveness and robustness of DLCCA. 

Keywords: Canonical correlation analysis; Unsupervised 
learning; Locality preserving; Dimension reduction 

I.  INTRODUCTION  
As an important aspect of information processing and 

analysis, pattern recognition is concerned in engineering, 
economy, finance, medicine, biology, sociology and other 
fields. Each kind of data representations of information can be 
called a modality. According to the number of types of data 
representations, modality data can be divided into single-
modal data and multi-modal data. Single-modal data is the 
data that one object only has one type of data representations. 
At present, the dimension reduction methods of images are 
mainly focused on single-modal images. Principal component 
analysis, multiple dimensional scaling and locality preserving 
projections are the classical methods of single-modal 
dimension reduction. Multi-modal material also called Multi-
source information is the data representations captured by 
multiple methods towards the same objects. Compared with 
single-modal data, multi-modal data has fuller information 
expression, and the low-dimensional features extracted from 
multi-modal data have stronger discriminative power. 
However, compared with single-modal images, multi-modal 
images often have more samples and higher-dimensional 
sample space, and the redundant information and noise 
information of multi-modal images undoubtedly have a 
certain impact on the recognition accuracy. Therefore, joint 
dimension reduction for high-dimensional multi-modal 
material is inevitable and challenging in image recognition. 

In view of the above problems, a large number of scholars 
have proposed some joint dimension reduction methods. 
Canonical correlation analysis (CCA) [1], one of 
representative joint dimension reduction methods, focuses on 
obtaining correlation projection directions of multi-modal 
data by maximizing the mutual information correlation and 
reducing the uncertainty between different modality material. 
Then high-dimensional data from different modalities are 
projected into a more discriminative low-dimensional 
consistent subspace, so as to enhance the recognition ability. 
At present, CCA has verified its effectiveness in practical 
applications such as image recognition, gene detection, data 
mining and music retrieval. The subspace learned by linear 
CCA method has gradually become the bottleneck to improve 
the recognition accuracy. For improving the classification 
accuracy and exploring more intrinsic information, the 
nonlinear idea is necessary to be consider in the correlation 
analysis framework. How to construct the nonlinear 
correlation analysis method has become an important research 
direction of joint dimension reduction. Kernel CCA [1] is an 
important nonlinear correlation analysis method. However, 
CCA and KCCA only focus on the correlation between paired 
samples, without making use of the internal geometric 
information between samples. 

With the help of locality structure embedding, manifold 
learning [2] can efficiently detect the inherent nonlinear  
structure in high-dimensional data space and can further 
capture the locality relation hidden in data. As a representative 
method of manifold learning, the locality preserving 
projections (LPP) [3] method is to construct the distant and 
close relationships between the pairs of data points in the 
space, and these relationships are maintained in projected 
subspaces. Similar to the idea of LPP, locality preserving 
CCA (LPCCA) [1] employs the idea of LPP into the 
correlation analysis framework, and thus the global nonlinear 
problem of joint dimension reduction is transformed into a 
combination of several local linear problems. At the same 
time, LPCCA is an unsupervised algorithm cannot utilize the 
discriminative structure hidden in raw high-dimensional 
multi-modal data. To overcome such shortage, we propose a 
discriminant-sensitive joint dimension discriminant method in 
the unsupervised cases, i.e. discriminant-sensitive locality 
canonical correlation analysis (DLCCA). Our method exploits 
the locality-based discriminant-sensitive structures of 
between-modal and within-modal data. A large number of 
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experiments have proved the credibility and robustness of the 
algorithm already. 

II. BACKGROUND AND RELATED WORK 
In section II, we make a retrospective description of CCA 

that is proposed to simultaneously reduce the dimensionality 
of two modalities in brief. Given N  pairs of mean-

normalized data ( ){ } 1
,

N dx dy
i i i
x y R ×

=
∈ , where xd  and yd  are 

respectively the dimensionality of [ ]1, , NX x x= and
[ ]1, , NY y y= . CCA aims at searching for pairs of the 

correlation projection directions xω  and yω  by 
maximizing the correlation between the low-dimensional 
correlation features , , 1, ,T T

x i y ix x y y i Nω ω= = = .The 
specific correlation optimization criterion can be denoted 
as follows: 
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With the property of scaling invariance of x  and y  can 
translate the denominator of Eq. (1) into the following 
constrained condition : 

1T T T T
x x y yXX YYω ω ω ω= =              (2) 

By the Lagrange multiplier method, we can obtain an 
equivalent form: 
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The optimization problem of Eq. (1) has been converted 
to the generalized eigenvalue problem where the 
eigenvalue λ is essentially the canonical correlation 
between x  and y mathematically. From Eq.(3), the 
eigenvector pairs ( ), , 1, ,xi yi i dω ω = corresponding to the 
top d  generalized eigenvalues in descending order can be 
obtained. 

III. DISCRIMINANT-SENSITIVE LOCALITY CANONICAL 
CORRELATION ANALYSIS DLCCA  

The optimization model of CCA can capture the linear 
correlation of different modalities. Unfortunately, facing 
nonlinear correlation cases, CCA is difficult to learn low-
dimensional correlation features with properties of 
discrimination. Sun et al. [4] proposed a locality preserving 
idea to develop the inner structure of manifold embedded in 
the local subspace.  Inspired by the locality preserving idea, 
we define the local similarity matrix LX N NR ×∈  where the 
definition of its elements is:  

( )2

2
exp( ),

0 otherwise
X i j x j i
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L
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Additionally, the parameter xt equals 

( )2

1 1 2
2 1n n

i ji j
x x n n

= =
− − . For the sample set Y , the 

notation of LY N NR ×∈  has the same definition. The definition 
of the local similarity matrices reveals that the distance of two 
data determines the similarity. Moreover, the local similarity 
matrices XL  and YL are symmetric sparse matrices which can 
simplify the following  computation. Now, these locally linear 
solutions can be combined into an approximate globally 
nonlinear solution.  

For traditional CCA and LPCCA, the lack of class 
information of training samples is their weakness which will 
limit their accuracy in the image recognition projection. Lei et 
al. [5] proposed a discriminative multiple CCA (DMCCA) 
method, which realized the extraction of discriminative 
correlation features by exploring class label information of 
samples in supervised cases. Although class label information 
can effectively improve the performance characterized as 
great discrimination of low-dimensional correlation features, 
it is impossible to obtain the class label information in real-
world applications for most time. Thus, we explore the 
discriminant-sensitive joint dimension reduction method in 
unsupervised cases. We utilize the nearest (or farthest) 
neighbor relationships to approximately simulate the intra-
class and inter-class relationships of between-modal and 
within-modal data. Besides the local similarity matrices, we 
further define the opposite repulsion matrix N NO R ×∈ where 
its elements’ definition is:  

( )2

2
exp( ),

0 otherwise
X i j x j i
ij

x x t if x far xO − − ∈=  (5) 

where ( )j ix far x∈  means that the sample ix  belongs to the 

k-farthest sample set of jx . Similarly, Y
ijO of the sample set Y  

has the same definition with X
ijO . The opposite repulsion 

matrix is a simulation approximation approach which can 
approximate inter-class relationships to some extent.  

By mean of the local similarity matrices and the opposite 
repulsion matrices, we minimize the repulsion correlation of 
different modalities and constrain the local scatters of the 
within-modal data. Concretely, the optimization strategy of 
DLCCA can be written as: 

,
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In eq. (8), ( )( )2
1 1

1
2

TN N
x y

xy ij ij i j i j
i j

H O O x x y y
N = =

= − −  is 

between-modal repulsion correlation. xyH  can be 
translated into the matrix form i.e. T

xyXB Y , where

xy xy x yB D O O= − , the symbol  defines an operator to 
multiply each corresponding element in two matrices with 
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the same size, such as ( )1 2 1 2
ij ijij

O O O O= . 
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matrix .In more detail, i th diagonal element of xyD  is 
the cumulation of the elements in the i th column of

X YO O . 
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within-modal local scatters of X  andY , where ( )ix (or ( )jy ) 
is the mean of the neighbor samples of ix (or iy ).  The 
within-modal local scatters can preserve the locality 
structures, which can approximate intra-class relationships to 
some extent. 

By the Lagrange multiplier method, the optimization 
problem of DLCCA can be converted into the problem of 
solving the generalized eigenvalues: 

2
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The eigenvector pairs ( ){ }
1

,
d

xi yi i
ω ω

=
  corresponding to 

the first d eigenvalue in descending order are the 
correlation projection directions of DLCCA. Then we can 
directly construct the correlation projection matrices 

[ ]1, ,x x xdW ω ω=  and 1, ,y y ydW ω ω= , and the 

correlation features T d N
xW X R ×∈ and T d N

yW Y R ×∈  can be 
obtained. 

IV. EXPERIMENTS AND ANALYSIS 
To assess the validity of the proposed method, some 

targeted experiments are designed on the GT image dataset (a 
facial image dataset including 50 individuals), the Umist 
image dataset (a facial direction image dataset from 20 
individuals) and the Semeion image dataset (a handwritten 
image dataset with1593 handwritten digit images). 
Essentially , these data sets pertain to single-modal datasets, 
so two kinds of modality data of each image are obtained with 
the help of the modality strategy [6]. That is, two modality 
data of each image are obtained by using Coiflets and 
Daubechies wavelet transform technology, and then the 
dimension of converted data is reduced to 100 dimension by 
Karhunen-Loeve transform. The nearest neighbor parameter 
of LPCCA and DLCCA is set as 5. In the final recognition 
task, all the above methods employ the nearest neighbor 
classifier based on Euclidean distance, and the recognition 
accuracy is the best recognition accuracy under all possible 
dimensions of the subspace. In the experimental section, 
DLCCA is compared with DMCCA, LPCCA, and CCA on 
the GT, Umist, and Semeion image data sets. We set the 
number of modality in DMCCA is 2 for keeping the modality 

consistent. For GT and Umist image datasets, we randomly 
select u  (u =2,3,4) images from each class as training images, 
the rest of the images will be used for testing, and we have ten  
sample random experiments are independently respectively. 
The average recognition accuracy and the standard deviation 
can be seen in Tables 1 and Table 2 respectively. 

In Table 1, when we select u  (u =2,3,4) images from each 
class as training samples, the average recognition accuracy of 
DLCCA is higher than that of LPCCA, CCA, and DMCCA, 
and the standard deviation of our novel method is superior to 
that of the contrast methods, which represents that DLCCA 
has strong robustness. In addition, the performance of 
DLCCA and LPCCA in Table 2 has shown that the idea of 
locality preserve has a better optimal solution than the 
compared methods in face direction data set caused by validity 
of its linear discrete approximation of continuous mapping of 
the geometric structure of manifolds. Summarizing Tables 1 
and 2, we can get the fact that the recognition accuracy 
increases positively along with the number of training samples 
goes up. It shows that the generalization ability of our training 
model is also improved with the increase of training samples, 
which is logical. At the same time, Tables 1 and Table 2 also 
prove the universality of DLCCA in processing different data 
sets in the field of image recognition. 

TABLE I.  EXPERIMENTAL RESULTS ON THE GT DATASET. 

Method 
Recognition Accuracy 

2Train 3Train 4Train 
DLCCA 56.03 1.60 62.73 1.62 66.98 1.66 

LPCCA 32.20 4.63 26.10 1.39 36.55 3.00 

CCA 18.15 2.01 27.55 3.17 52.8 2.79 

DMCCA 12.37 1.57 39.80 1.85 53.27 2.32 
A  S: A is average recognition accuracy (%) and S is standard deviation. 

TABLE II.  EXPERIMENTAL RESULTS ON THE UMIST DATASET. 

Method 
Recognition Accuracy 

2Train 3Train 4Train 
DLCCA 65.33 3.62 70.52 2.74 82.00 3.45 

LPCCA 61.7 4.8 65.03 4.32 77.19 3.85 

CCA 49.57 2.92 51.98 2.97 58.71 3.36 

DMCCA 55.94 4.2 60.74 3.64 59.9 5.75 
A  S: A is average recognition accuracy (%) and S is standard deviation. 

Image data is a kind of common high-dimensional and 
small sample data, that is, the data dimension is high and the 
number of samples is relatively small. In the Semeion 
handwritten data set, DLCCA is compared with LPCCA, 
CCA, and DMCCA. Randomly select v  ( v =20,30,40) 
images from each class as training images, which is a 
relatively large number, the rest of the images are used for 
testing, and 10 sample random experiments are run 
independently. The average recognition rate and standard 
deviation are shown in Table 3 and Fig. 3. 
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TABLE III.  EXPERIMENTAL RESULTS ON THE SEMEION DATASET. 

Method 
Recognition Accuracy 

20Train 30Train 40Train 
DLCCA 79.63±1.34 83.13±2.23 86.11±1.36 

LPCCA 56.52±2.12 65.64±1.9 69.84±2.24 

CCA 64.75±1.16 71.18±0.72 74.2±0.84 

DMCCA 74.97±1.98 83.72±0.86 85.72±1.02 

A  S: A is average recognition accuracy (%) and S is standard deviation. 

Figure 1.  The recognition rates under each sample random experiment 
when each class has 20 training samples on the Semeion image dataset. 

From Table 3 and Fig. 1. we can see that the recognition 
accuracy of DLCCA still shows a relatively stable upward 
trend when the number of training samples is large and rising, 
the average recognition rate is better than that of the contrast 
methods. At the same time, the standard deviation of 10 
random experiments is also ideal and stable from Fig. 3, which 
proves the robustness of the algorithm. 

The sample covariance matrix of image data, as a common 
high-dimensional small sample data, only considering the 
local structure often loses the global information and seriously 
deviates from the real covariance matrix, which makes  
LPCCA have poor recognition performance on two image sets 
even though it performs well on the Umist dataset. Compared 
with unsupervised methods, DMCCA shows the better 
discrimination of related features supplied from class label 
than LPCCA and CCA, which are representative supervised 
methods. Although DLCCA is an unsupervised method, it can 
sense the discrimination well using similarity to approximate 
real class label as well as shows good recognition performance 
in Tables 1,2 and 3 respectively which means that it is suitable 
for most scene. The recognition rate of DLCCA is better than 
that of LPCCA and DMCCA, which further verifies the 
correctness of approximation for classification. DLCCA 
method has a higher recognition rate in most cases, which 
shows the effectiveness of DLCCA in image recognition to 
some extent. 

V. CONCLUSION 
CCA can simultaneously reduce the dimensionality of 

different modalities. However, CCA is an unsupervised linear 
joint dimension reduction method, which fails to reveal the 
local discriminative structures hidden in raw high-
dimensional multi-modal material. Class label information 
can effectively develop the discrimination hidden in the low-
dimensional correlation features, but capturing the class label 
information in the real-world applications turns out to be an 
impossibility for most time. Aiming at this issue, we explore 
the discriminant-sensitive joint dimension reduction method 
in the unsupervised cases. We develop the novel method 
DLCCA with the help of the local similarity matrices and the 
opposite repulsion matrices. The low-dimensional nonlinear 
correlation features characterized as great discrimination can 
be learned by minimizing the repulsion correlation of different 
modalities and constrain the local scatters of the within-modal 
data. The validity and robustness of DLCCA has been proved 
by extensive experiments on the face and handwritten image 
datasets.  
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