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Abstract—Based on the agglomerative hierarchical cluster-
ing algorithm, this paper proposes a new information entropy
evaluation indicator—Average Discriminant Entropy(ADE),
to measure the stability of cluster structure. After that, We
designed the corresponding algorithm. In order to verify the
validity of the indicator, six heterogeneous artificial data sets
were used to simulate. By comparing ADE with other classic
evaluation indicators, we found that ADE can obtain the
best results under various data sets. Finally, a Monte Carlo
experiment on the data with different noise levels proved the
robust of ADE.
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I. INTRODUCTION

With the advent of the era of big data, data mining

becomes more important [1]. The purpose of data mining

is to extract useful information from the massive data.

As one of the most important tool of data mining, the

cluster method can divide a large amount data into several

clusters, which contains abundant potential information.

Therefore, the cluster method has been applied to statistics,

machine learning, biology, marketing and so on [2]–[4].

The cluster method can be divided into partitioning

methods, hierarchical methods, density-based methods,

grid-based methods and model-based methods [5]. Par-

ticularly, the hierarchical clustering method can extract

the information of different hierarchical structures, it is

often used in the construction of biological evolution

trees and plays an important role in bioinformatics. The

hierarchical clustering method initially takes every sample

as a cluster, and two clusters is combined to a new cluster

until all samples are contained in a cluster or meet a certain

termination condition. Nevertheless, how to determine the

optimal cluster number is a main problem [7].

In recent years, a lot of indicators have been proposed

to solve the problem, such as Davies-Bouldin(DB) index,

Dunn index, etc [8]. However, most of them aren’t fit

for all data sets with different feature. In 1948, Shannon

proposed the information entropy [9] to describe the

uncertainty of system. In this paper, we introduce the

information entropy for the evaluation of cluster. The Av-

erage Discriminant Entropy(ADE) indicator is developed

to achieve it.

This paper is organized as follows. In the second

section, we review the clustering method and hierarchical

clustering method. Section 3 introduces a few of external

validity indicators and internal effectiveness indicators for

clustering. The fourth part introduces the information en-

tropy and proposes the ADE indicator, and then gives the

corresponding algorithm based on hierarchical clustering.

Six heterogeneous artificial data sets are used to compare

three classical indicators with ADE indicators, the result

shows that ADE indicator perform well. Subsequently, a

Monte Carlo experiment on the data with different noise

levels is applied to prove the robust of ADE. Finally, a

brief summary of this article is given.

II. THE INTRODUCTION OF CLUSTERING

A. Clustering

Considering the following data set:

xi = [xi1, xi2, . . . , xi,p]
T ∈ Rp (1)

X = [xT
1 ,x

T
2 , . . . ,x

T
N ]T ∈ RN×p (2)

where xi is the feature vector of the sample i, X is the

set which consists of N samples, and the dimension for

feature vectors is p.

The task of clustering is to classify these samples to get

structure C without supervision, which requires [10]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C = {C1, C2, · · · , CQ} , Q ≤ N
Ci �= Ø, i = 1, 2, · · ·Q
Q⋃
i=1

Ci = X

Ci

⋂
Cj = Ø, i, j = 1, 2, · · ·Q, i �= j

(3)

where C represents the set of all clusters, and Ci repre-

sents each cluster.

B. Hierarchical Clustering

As an important branch of clustering method, hierar-

chical clustering is divided into agglomerated hierarchical

clustering and divisive hierarchical clustering. The main

difference of them depends on whether the process is top-

down or bottom-up. Next we will focus on agglomerated

hierarchical clustering, which is shown in (4), Where H
represents the hierarchical structure:

⎧⎪⎪⎨
⎪⎪⎩

H = {H1, H2, . . . , HQ}, Q ≤ N

Hi= {C1
i ,C

2
i , . . . ,C

N−i+1
i }

Hi ∪Hi+1 −Hi ∩Hi+1 = {Cm
i ,Cn

i ,C
p
i+1}

Cm
i ∪ Cn

i = Cp
i+1

(4)

In addition, Hi has to satisfy (3) as C.

In general,the hierarchical clustering is shown in pedi-

gree figure [11], as Fig.1:
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Fig. 1. A pedigree figure

III. TRADITIONAL EVALUATION INDICATORS FOR

CLUSTERING

To determine the optimal number of clusters, it is neces-

sary to use the validity indicator to evaluate the clustering.

Traditional evaluation indicators for clustering are divided

into external and inner validity indicator. Because the

external validity index needs the priori information, which

is hard to meet, we just introduce several classic inner

indicators.

A. Internal effectiveness indicator

1) Davies-Bouldin Index(DB)

In DB index [12], Rkm represent the resolution among

clusters:

Rkm = (sk + sm)/d(ok,om) (5)

where sk and sm is the similarity in cluster Ck and Cm

and ok and om is the cluster center. sk is calculated as

follows:

sk =

∑
xi∈Ck

d(xi,ok)

nk
(6)

where nk is the sample number in cluster Ck. The DB is

obtained as:

DB =

Nc∑
k=1

Rk/Nk, Rk = max
m=1...Ck,m �=k

Rkm (7)

In which Nc is the number of clusters, and for each cluster

k, there is a maximum isolation Rk with other clusters.

The smaller the DB value, the better clustering is.

2) Dunn index

As for Dunn index [13], the compactness in cluster is

described by the cluster diameter and the distance among

clusters stands for the isolation. The Dunn index is shown

as follows:

D = min
k=1...Nc

{ min
m=1...Nc

[
D(k,m)

min
h=1...Nc

diam(Ch)
]} (8)

The diameter is the largest distance among samples in a

cluster:

diam(Ch) = max
xi,xj∈Ch

d(xi,xj) (9)

The result is more reliable with a larger value of Dunn

index.

3) COP coefficient

COP =
1

n

∑
Ck∈C

nk
(1/nk)

∑nk

i=1 d(xi,ok)

min
xj /∈Cl

max
xi∈Cl

d(xi,xj)
(10)

where ok is the cluster center, nk is the number of samples

in cluster k. The COP coefficient is better with a smaller

value [14].

Considering most of internal effectiveness indicators

aren’t fit for data set with different type, we propose the

Average Discriminant Entropy(ADE) under the inspiration

of Shannon Entropy, which can evaluate the clustering in

a new perspective.

IV. ENTROPY EVALUATION INDICATOR

A. Entropy

Shannon proposed information entropy for the first time

in 1948. Information entropy can be used to measure the

uncertainty of the system, information entropy of discrete

random variables is defined as follows:

H(X) = −
∑
x∈X

p(x) loga p(x) (11)

It is stipulated that all information entropy below uses

bit as the unit, and the base is omitted.

Since the information entropy can describe the degree of

chaos, we use it to extract the structure and approach the

problem of determining the optimal number of clusters.

B. Average Discriminant Entropy (ADE)

Although the paper put forward clustering validity indi-

cator based on the hierarchical clustering, it is also inspired

by the K-means algorithm.

The K-means algorithm specifies the number of clusters

and divides all sample points into the nearest cluster. The

algorithm don’t finish until all clusters does not change in

a loop. An important step in this process is to calculate

the distance from the sample point to each cluster center

and select the nearest cluster center after comparison. If

the distances between one sample point and two or more

cluster centers are equal, the sample can be divided into

different clusters. This situation can be understood as a

greater uncertainty of this sample. We believe that an

optimal cluster structure should have a low uncertainty, so

information entropy is introduced to quantify the structural

stability of the system.

In hierarchical clustering, the distance between the sam-

ple and it’s center of the cluster is the smallest relative to

the centers of the other clusters. Meanwhile, the minimum

distance between the sample point and the center of the

other clusters is selected. If the minimum distance to other

clusters is close to the distance between the sample and it’s

cluster center, the uncertainty of this sample is relatively

large, otherwise the uncertainty is small. In this way,

we can obtain the Average Discriminant Entropy (ADE)

of clustering evaluation indicator based on information

entropy.

In a certain cluster structure of hierarchical clustering,

suppose that there are N samples and c clusters. Ci de-

notes the cluster to which sample i belongs, Ck is another

cluster. There exist i = 1 . . . N and k,m ∈ {1 . . . c}.
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Define a binary random variable V (i) for each sample

i: ⎧⎪⎨
⎪⎩
V (i, 1) =

d(xi, Ci)

d(i, Ci) + min
i/∈Cm

d(xi, Cm)

V (i, 2) = 1− V (i, 1)

(12)

The Discriminant Entropy(DE) for sample i is expressed

as:

DE(i) = H(V (i)) (13)

So the ADE for the structure is the average of DE of

all samples, which is shown as:

ADE =

∑i=N
i=1 DE(i)

N
(14)

It is concise and applicable to get the information from

the structure by using ADE. When the ADE is smaller, the

less complex is the structure, that is to say, the extracted

structure is stable. Next, the corresponding algorithm is

designed on the base of ADE.

C. Algorithm design

A good designed algorithm is adaptable for different

systems, it’s vital to extract the structure of data when the

characteristics of the data itself is complex. Fig.2 shows

two cluster structures with different stability. As can been
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Fig. 2. Two structures with different stability

seen from Fig.2, the optimal cluster number is 5. However

with the influence of structure complex, data 1 has is more

obvious to be clustered into five clusters than data 2. In

different systems, ADE can identify the structure exactly.

Considering the fact that the 1 or N cluster has little

research value, besides, the corresponding ADE is zero,

so we don’t take these situations into account.

The algorithm flows of entropy evaluation based on

hierarchical is shown in Algorithm 1. Accordingly, The

optimal cluster number can be worked out, from which

we can get most information of a system.

V. SIMULATION

On the base of hierarchical cluster, we selected and

compared the effect of DB Index, Dunn Index, COP co-

efficient with ADE using the artificial datas. The artificial

data sets we design used to confirm the efficiency is

shown as follows: In Fig.3, six types of data sets can

clearly determine the optimal number of clusters. The first

one is standard data set, and the other five are data sets

Algorithm 1 Framework of ADE to extract structure for

complex system.

Input: The set of samples, X =
[
xT
1 ,x

T
2 , . . . ,x

T
N

]
;

Output: Ensemble of optimal clusters, C; The corre-

spondingly ADE of the optimal structure;

1: Initial ensemble of clusters, C = [C1, C2, . . . , CN ];
2: Calculating the center of clusters with the help of C

and X;

3: Obtaining the distance of every sample to all clusters;

4: Getting the ADE of current structure;

5: Updating the ensemble of clusters: combining the two

closest clusters into one;

6: the number of clusters is n = n − 1, if n �= 1, go to

2;

7: return C and ADE;
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Fig. 3. The artificial data

adding different perturbations based on the standard data

set. The disturbance factors are respectively inter-cluster

separation, noise, sub-cluster, density and cluster radius.

By testing six types of data sets, the result can fully reflect

the comprehensive performance of the ADE indicator.

It is easy to compare and analyze with the evaluation

results of various indicators by using artificial data sets,

for the optimal clustering number of the sample can be

gotten directly. The optimal clustering numbers of above

six types of data sets are 5, 5, 5, 3, 5, 5. Among 6 types

of data set, the optimal clustering number of the fourth,

which is influenced by sub-cluster, is controversial, that

is to say, why it is not 5 but 3. At the scale of Fig.4,

it can be seen that the two categories with sub-clusters

can be clearly divided into two categories. On a larger

scale, the sub-clusters will be in the same category and the
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sub-clusters are not separated. However, the three major

categories still have obvious separation characteristics, so

in our artificial data sets, the optimal number of clusters

for the fourth category of data is 3.

Table I to VI show the clustering evaluation results for

the six types of artificial data sets when the number of

clusters M is 2 to 6. The bold ones are the optimal values

of the corresponding indicators.

It can be seen from Table I to VI, the evaluation results

of Dunn index and COP coefficient for data set 3 are not

satisfying, and the result of the COP indicator on the data

set 4 also deviates from the real value. DB index and

ADE perform well on six data sets. It indicates that the

ADE is more adjustable to multiple systems compared to

other selected indicators. Furthermore, the value of ADE

indicator can reflects the stability of system, which has

a practical significance. Therefore, concluded from the

above analysis, the ADE indicator can be widely applied

in the evaluation of clustering.

Table I
CLUSTER EVALUATION RESULTS OF DATA SET 1

M = 2 M = 3 M = 4 M = 5 M = 6
DB 1.0386 0.6681 0.4482 0.1701 0.4560

DUNN 0.3567 0.5187 0.5187 2.0437 0.0891
COP 100.8738 51.3525 29.7428 8.5112 11.1527
ADE 0.8772 0.7731 0.5890 0.3792 0.4752

Table II
CLUSTER EVALUATION RESULTS OF DATA SET 2

M = 2 M = 3 M = 4 M = 5 M = 6
DB 1.0676 0.7231 0.5503 0.4277 0.6877

DUNN 0.0832 0.1110 0.1112 0.2396 0.0497
COP 102.5458 55.7836 37.9334 20.6919 0.8403
ADE 0.8724 0.8038 0.7276 0.6359 0.6868

Table III
CLUSTER EVALUATION RESULTS OF DATA SET 3

M = 2 M = 3 M = 4 M = 5 M = 6
DB 1.0516 0.6859 0.4806 0.2602 0.4985

DUNN 0.1008 0.1113 0.1562 0.1637 0.2055
COP 103.7948 51.3515 32.4342 12.0899 11.6058
ADE 0.8737 0.7808 0.6183 0.4343 0.4646

Table IV
CLUSTER EVALUATION RESULTS OF DATA SET 4

M = 2 M = 3 M = 4 M = 5 M = 6
DB 0.3590 0.1991 0.3491 0.4458 0.7159

DUNN 0.5204 1.4012 0.0909 0.0734 0.0359
COP 51.6602 22.1823 21.5122 23.0624 23.0876
ADE 0.5864 0.4792 0.5278 0.5912 0.6492

Next, in order to analyze the robustness of ADE indi-

cators, Monte-Carlo repeat experiments were introduced.

For the standard data in data set 1, there exist 5 clusters

in total, and the center of each cluster is taken from

five points evenly distributed on a circle with (0, 0) as

the center and 50 as the radius. The cluster radius is 10
and there randomly distribute 100 scattered points in each

Table V
CLUSTER EVALUATION RESULTS OF DATA SET 5

M = 2 M = 3 M = 4 M = 5 M = 6
DB 0.8546 0.6145 0.4458 0.1763 0.4055

DUNN 0.3481 0.3481 0.5130 1.9947 0.0375
COP 127.2204 67.2145 31.7492 16.5361 36.1592
ADE 0.6946 0.5997 0.5323 0.3910 0.5773

Table VI
CLUSTER EVALUATION RESULTS OF DATA SET 6

M = 2 M = 3 M = 4 M = 5 M = 6
DB 0.9203 1.5595 0.4614 0.2199 0.4252

DUNN 0.2646 0.2660 0.3917 0.7621 0.0292
COP 139.4750 85.5576 48.2121 33.2816 54.1409
ADE 0.7303 0.8093 0.6006 0.4700 0.6053

cluster. For noise points (xk, yk), let xk and yk are taken

from a uniformly distributed random sequence obeying

[−80, 80]. Repeat the test 100 times with noise ratios of

5%, 10%, 15% and 20%. To prevent large deviations, the

number of candidate clusters is set 2 from to 11. It is

verified whether the indicators can get the optimal clusters

under the above conditions. Among them, one set of data

is taken under each of the four noise levels, and the results

are shown in Fig. 4. It can be seen that the data sets under

each level of noise still have obvious characteristics of 5

categories:
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Fig. 4. Data sets at each noise level

Perform 100 random experiments each, describe the

optimal number of clusters during each experiment with

data points, and mark inaccurate results with red circles,

as shown in Fig. 5:

Among them, the accuracy of evaluation at each level

is 93%, 90%, 89% and 81%, that is, the clustering in-

dicator has a accuracy of close to 90% when the noise

ratio is lower than 15%. Therefore, the ADE indicator is

considered to have good robustness and relatively stable

and accurate in the evaluation of clustering.
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Fig. 5. Results of 100 random experiments at each noise level

VI. CONCLUSION

In this paper, we put forward an ADE indicator to

quantify the uncertainty of a system in clustering method,

and design a corresponding algorithm by introducing

hierarchical clustering. Comparing DB indicator, Dunn

indicator, COP coefficient and ADE with six artificial data

sets, it’s obvious that the ADE indicator has a comprehen-

sive and outstanding performance. Furthermore, to analyze

the robustness of ADE indicators, A Monte-Carlo repeat

experiment is carried out. The method proposed in this

paper can be extended to other fields, such as commerce,

biology, Internet etc., which has a bright future.
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