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Abstract—Aiming at the problem that the existing text 
detection technology runs slowly on edge devices and terminal 
devices with limited storage space and low computing capacity, 
this paper proposes a method based on A Light and Fast Face 
Detector for Edge Devices (LFFD) and Connectionist Text 
Proposal Network. (CTPN) A Light and Fast Text Detector 
(LFTD). First of all, distinguishing from the current situation of 
large number of parameters and complex model structure of 
previous text detectors, this paper is based on the LFFD face 
detection model. It introduces the characteristics that it does not 
need to preset a large number of anchor boxes with different 
sizes and proportions, which makes the detection box network 
in this paper. The frame is lighter. Secondly, for the problem 
that the detection range of text and image detection frames is 
different, this paper improves the label part of LFFD and 
combines the CTPN method to divide the detection frame of this 
article into several detection frames according to the font size. 
The proposed method can theoretically detect Large continuous 
text scale with 100% coverage. Experiments were performed on 
popular benchmark datasets (ICDAR11, ICDAR13 and 
ICDAR15). The proposed method can obtain fast inference 
speed (NVIDIA TITAN 1080Ti: 131.45 FPS at 640 × 480; 
NVIDIA 2080Ti at 640 × 480: 136.99 FPS; 640 × 480 Raspberry 
Pi 3 Type B +: 8.44 FPS), the parameter amount of this model is 
8 MB. (Abstract)

Keywords—text detection; convolutional network ;anchor 
free(key words)

I. INTRODUCTION (HEADING 1)
Traditional text detection algorithms rely on manual 

feature extraction [9,10, 11, 12] to capture the attributes of the 
text area. Although a large amount of data is not needed for 
training and it runs fast, it is not reliable due to the influence 
of light, paper wrinkles, watermarks, and other uncertain 
factors. Recently, detection algorithms based on convolutional 
neural networks [13,14,15,16] rely on finding effective feature 
methods from training data to make great progress in text 
detection.

However, text detectors are sometimes deployed on some 
terminal computing devices and edge computing devices, such 
as mobile phones, scanners, and so on. The salient features of 
these devices are limited storage space and low computing
power. Aiming at this problem, this paper proposes a high-
precision and fast text detector. The previous text detection 
methods [18,14,15,16] have achieved good performance in 
various benchmark tests in this field. Most of them use 
VGG16, Resnet50, Dense net and other models as the 
backbone network. We extensively surveyed the top 5 best 
performing methods and show their accuracy in Table I.
Although these methods have similar accuracy, they all have 
complex model structures and a large number of training 
parameters, resulting in longer detection and recognition time 
on devices without a GPU. It is difficult and unrealistic to 

further improve accuracy by using backbone networks with 
more complex structures and more parameters. In our opinion, 
in order to better apply to different scenarios, it is necessary to 
balance model accuracy and algorithm complexity.

TABLE I. COMPARISON WITH OTHER RESULTS ON ICDAR 2015

Method
IC15

R P H

EAA[30] 83 84 83

PSENet[2] 85.2 89.3 87.2

PixelLink[26] 82.0 85.5 83.7

FOTS[28] 82.0 88.8 85.3

CRAFT[5] 84.3 89.8 86.9

In response to the urgent needs of Internet food sales 
business license detection and recognition, and the existing 
models have slow recognition speed, and the license 
watermark has a large impact on the recognition effect. This 
paper presents a light weight fast text detector LFTD.

II. RELATED WORK

Scene text detection and recognition has always been a 
research hotspot in the field of computer vision. There have 
been many effective methods [2,3,1,4,7,15,16] published. 
This section will focus on work related to this algorithm.

Traditional methods rely on the characteristics of manual 
extraction. Stroke Width Transform (SWT) [18] and 
Maximally Stable Extremal Regions (MSER) [19,20] use 
edge detection or extreme region extraction to find candidate 
characters. FAS Text [17] is a fast text detection system, 
which is improved on the basis of a fast key point detector for 
stroke extraction. However, these methods lag behind those 
based on deep neural networks in accuracy and adaptability, 
especially when dealing with challenging scenes, such as low 
resolution and geometric distortion. 

Text detection algorithm based on target detection. Unlike 
general object detection, text has the characteristics of 
uncertain shape and large length and width. To solve this 
problem, Textbox [22] modified the aspect ratio of the 
convolution kernel and anchor to effectively capture various 
text shapes. DMPNet [21] attempts to further solve this 
problem by merging quadrilateral sliding windows. In recent 
years, the rotation-supported regression detector (RSDD) [23]
takes full advantage of rotation invariance through active 
rotation conv. However, in these methods, the limitation of 
detecting regular text of quadrilaterals has not been shaken out, 
and text in real scenes may There are various shapes.
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Another commonly used method is based on segmentation 
detection algorithms, segmentation-based Multi-scale FCN 
[24], Holistic-prediction [25] and Pixel Link [26] .Recently, 
some new segmentation-based text detection algorithms have 
appeared for detecting irregular text. LOMO [1] solves 
irregularly shaped text detection by using Iterative 
Refinement Module and Shape Expression Module. LSAE [m] 
uses embedded clustering to predict text instances of arbitrary 
shapes. PSE Net [2] uses a forward progressive scaling 
method to distinguish adjacent text instances. PMTD [3] uses 
a method similar to Mask R-CNN. It uses the form of pixel-
wise regression under the supervision of Pyramid Label to 
obtain a soft text mask with more information in each text area.

Text detection algorithm combining detection and 
segmentation. The method based on regression generally has 
the problem of insensitive text size, and the method based on 
segmentation is not effective for small text targets. Then
combining the advantages of regression and segmentation can 
effectively solve their problems. SSTD [27] uses an attention 
mechanism that enhances text-related areas by reducing 
background interference on feature layers. Pixel Anchor [4]
efficiently integrates pixel-level image semantic segmentation 
and anchor-based detection regression methods through 
feature sharing, and uses pixel-level image semantic 
segmentation results as an attention mechanism for 
supervising anchor detection regression , While effectively 
guaranteeing the text detection rate, the accuracy of text 
detection is improved.

Existing text detection models can achieve better detection 
results, but in order to improve the accuracy and recall of these 
models, they all have problems with large parameters and 
complex model structures, which leads to their complexity 
and storage space. With high requirements, they cannot 
effectively balance the detection effect and algorithm 
complexity, and thus cannot be used on some edge computing 
devices. Therefore, there is still huge room for improvement 
in text detection on low-powered devices. Exploring 
lightweight text detection on the premise of ensuring accuracy.

This work was inspired by LFFD[6], which uses a 
lightweight and fast face detection algorithm to solve the 
problem of face detection on low computing power devices. 
LFFD is designed for face detection. According to the 
characteristics of face size, the detection frame is defined as a 
square. However, the shape of the text is more variable, so you
cannot directly use LFFD for text detection. In addition, we 
refer to the annotation method of CTPN[7] to solve the 
problem of indefinite text aspect ratio.

III. LIGHT AND FAST TEXT DETECTOR

In this section, we first review the concept of RF and its 
relationship to text detection in Section A. Then, Section B
gives the network design details. How to generate labels is 
described in Section C. Section D explains how Loss is 
calculated. 

A. Rethinking receptive fields in the context of text 
detection
Text detection is a branch of general object detection, and 

it has its own unique characteristics. First of all, for short texts, 
we only need the receptive field related to the size of the text 
to determine the position of the text. Secondly, for long texts, 
sufficient receptive fields are needed to cover the entire text 
area. However, if large receptive field background 

information is used, it will interfere with the detection to a 
certain extent and affect the detection effect. Step size, the text 
cannot be covered with matching receptive fields for texts 
with different aspect ratios. However, when the human eye 
looks at the long text, the entire text is not completely seen, 
but the text area that is currently being read is annotated. 
Therefore, the text is detected by stitching adjacent text to 
form a long text. Large receptive fields cover the entire area.

The first-stage detection algorithm mostly uses a 
predefined box anchor box. In order to detect different objects, 
the anchor frame has a variety of aspect ratios and sizes. These 
anchors always have a lot of redundancy when they are 
defined. In text detection, it is reasonable to use a larger aspect 
ratio anchor box, because most text is rectangular, which is 
also mentioned in [Textbox]. In face detection applications, 
LFFD analyzes the effect of effective receptive fields on 
detection, and designs anchors for different face sizes, but it is 
not suitable for rectangles and irregular quadrilaterals. A 
similar ingenuity is also designed in EAST Matching strategy, 
but its effect is not good for long texts, and it requires a large 
receptive field as mentioned above, so we refer to CTPN to 
block and form a small rectangle, then the shape of RFs is also 
rectangular. Different from CTPN, instead of using a fixed 
small rectangle with a wideband of 16 pixels, we use different 
proportions of the feature map to reduce the size of the text.

The width of the box. As for the matching strategy, this 
method uses a straightforward and concise approach-matching 
RF to ground truth-box instead of threshold IOU if and only if 
the center is in ground truth-box.

B. Network structure
Based on the above analysis, we can design a specialized 

backbone network for text detection. The size of the receptive 
field and the pace determine the setting of the Loss branch. 
The size of the receptive field ensures that the features of the 
text are robust and distinguishable, while the stride ensures 
100% coverage. A schematic diagram of the network 
proposed by the overall architecture is shown in Figure 2. This 
method can detect text with a width greater than 10 pixels. It 
can be seen that the backbone is a single-phase model 
consisting of four parts. For specific information about the 
Loss branch, see Table II.

Figure. 2 Network structure

The feature extraction section has 10 convolutional layers. 
The first two down sampling steps are 2. Therefore, the RFs 
at other convolutional layers in this section are 4 steps. A key 
principle is: take input samples as fast as possible, while 
maintaining 100% coverage text. There are two branches in 
this section. Loss branch 1 comes from c8. For text height 10-
15, its RF size is 55. Similarly, for text with a height of 15-20 
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pixels, the second Loss branch is responsible, and its receptive 
field is 71. Obviously, these two branches can ensure that 
small text can be detected in the center of our receptive field, 
thereby achieving 100% coverage. As we discussed in Section 
3.1, microtext requires more contextual information and 
smaller receptive fields than large text. Therefore, the RFs we 
use are much larger than the average text score. The ratios of 
RFs and average text for branches 1 and 2 are 4.4 and 4.0, 
respectively. In Table 2, this ratio gradually decreases from 
4.4 to 1.3 because larger texts require less contextual 
information. In the backbone, the kernel size of all 
convolutional layers is 3 * 3. However, the kernel size of the 
convolutional layer in the branch is 1 * 1, which does not 
change the size of the RFs. Each branch has two sub-branches, 
one for text classification and the other for box regression.

TABLE II. DETAILS ABOUT NETWORK DEFINITION

No.ilter branch Location RF size RF stride
Tiny 
part 64

Loss 
branch1 c8 55 4

Loss 
branch2 c10 71 4

Small 
part 64

Loss 
branch3 c13 111 8

Loss 
branch4 c15 143 8

Mediu
m part 128 Loss 

branch5 c18 223 16

Large 
part

128

Loss 
branch6 c21 383 32

Loss 
branch7 c23 511 32

Loss 
branch8 c25 639 32

This method can cover all text from 10 pixels to 560 pixels 
in height. The entire backbone network consists only of conv 
3 × 3, conv 1 × 1, ReLu, and residual connections that are 
deeply optimized by each neural network framework. They 
are also widely used in other models. Although BN [8] has 
become the standard configuration of many models, due to its 
slow inference speed, we have not adopted BN [8] as a 
network component in the model. It has been shown in LFFD 
that the use of BN has little effect on the detection effect of 
the model. As shown in Figure 2, in each part, in order to 
facilitate the training of deeper networks, the residual 
connections are placed side by side. The number of filters for 
all convolutional layers in the first two parts is 64. We did not 
add a filter, because the first two parts have larger feature 
maps, which are more expensive to calculate. However, the 
number of filters in the last two sections can be increased to 
128, without much extra effort. See Table 2 for more details.

C. Label Generation
1) Score Map Generation
Since LFCD is based on horizontal text detection, we only 

consider horizontal text and text with a small tilt angle. Figure 
* shows the generated score map area, which is the reduction 
of the original label box.

For a quadrilateral Q = ൛݌௜|݅ < {1,2,3,4}ൟ, ௜݌ = ,௜ݔ}  ௜}isݕ
a vertex of the quadrilateral, and the four vertices are arranged 
clockwise. To reduce Q, we first calculate each side length ݎ௜

௜ݎ = min ൬ܦ൫݌௜, ,ାଵ൯(௜௠௢ௗସ)݌ ቀ݌௜, ൫(௜ାଶ)௠௢ௗସାଵ൯ቁ൰݌ (1)

Where D൫݌௜, ௜݌ ௝൯represents the Euclidean distance from݌
to ݌௝.

We first shrink the two long sides of the quad, and then the 
two short sides. For each pair of edges, we determine the 
"long" edge by comparing the average of their lengths. For 
each edge ൫݌௜,  ାଵ൯, we move its two endpoints inward(௜௠௢ௗସ)݌
by 0.3r to reduce it, and r is the length of the short edge (this 
is different from EAST).

2) Geometry Map Generation
As discussed in Section 3.1, we generate different score 

maps for different sizes of text, and then divide into different 
detection branches and divide them into boxes of different 
widths. The box generation process is shown in Figure *.

We first generate a reduced quadrilateral, and then for each 
point in the quadrilateral, the ground truth is defined as:

T =
ோி೤ି௕೤೟

ோிೞ/ଶ
(2)

B =
ோி೤ି௕೤್

ோிೞ/ଶ
(3)

௬ܨܴ represents the center point of the y-axis of RF , ܾ௬௧
represents the top y coordinate, ܾ௬௕ represents the bottom y 
coordinate, and RFs represents the size of the branch RF. The 
calculation results are put into 2 channels of Box ground truth.

The width of the box and the output size of the text 
segmentation box of different sizes are consistent with the 
reduction ratio of the original image, as shown in Table II.

D. Model Outputs and Loss Functions
Each loss branch contains two sub-branches for text 

classification and Box regression. The classification branch 
loss function uses two types of cross-entropy loss functions. 
Box regression For the regression of the upper and lower 
distances of the RF anchor, the height of the text is continuous. 
If the height of the text is close to the interval we set, it is easy 
to be classified into another type of branch. Therefore, we set 
an interval gray. In grayscale intervals, the text is ignored by 
the corresponding branch. For example, the detection height 
in branch 3 is 20-40 pixels, so the corresponding upper and 
lower gray interval is [18,20] and [40,44]. For Box regression, 
use the L2 loss function directly. Box regression L2 loss is 
calculated only at positive RF anchor points, other points are 
ignored. In the final loss function, both losses have the same 
weight.

Loss can be expressed by the formula:

L = ∑ ൫ܮ௦௜ + ௚௜൯଼ܮ௚ߣ
௜ୀ଴ (4)

௚௜ܮ = ඥ( ௧ܶ௜ − ௟ܶ௜)ଶ + ඥ(ܤ௧௜ − ௟௜)ଶܤ (5)

Among them, ܮ௦௜ and ௚௜ܮ represent the loss of the i-th branch 
classification and box regression, respectively, the weight 
coefficient between the two losses of ߣ௚ weight. In our 
experiments, we set ߣ௚௜ . ௧ܶ௜ , ௧௜ܤ represents the distance to the 
upper and lower borders, and the calculation method is 3.4, 
and ௟ܶ௜ , ௟௜ܤ represents the network output.
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IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

Our LFTD was evaluated on three standard benchmarks: 
ICDAR 2015, ICDAR 2013, ICDAR 2011 Total-Text. 
ICDAR 2015 includes 1,500 images collected using Google 
Glass. This training set has 1,000 images, and the remaining 
500 are used for estimation. This dataset is challenging due to 
the multi-directional and very small text examples. Total-Text 
contains 1555 pictures with different text types, including 
horizontal, multi-directional, and curved text examples. There 
are 1,255 and 300 images for training segmentation and test 
segmentation, respectively.

Table III shows the results and operating speed of different 
models on the ICDAR 2015 dataset. Figure 3 shows the results 
of LFTD on invoice inspection and business license inspection.

TABLE III. COMPARISON WITH OTHER RESULTS ON ICDAR 2015

Method
IC15

R P H FPS

EAA[30] 83 84 83 3.5

PSENet[2] 85.2 89.3 87.2 1.6

PixelLink[26] 82.0 85.5 83.7 8.8

FOTS[28] 82.0 88.8 85.3 7.1

CRAFT[5] 84.3 89.8 86.9 7.6

LFTD 75.2 52.4 62.3 121.4

            
Figure. 3 Test results on the left invoice, test results on the right 

business license

V. CONCLUTION

This paper aims at the problem that the existing text 
detection algorithms run slowly on some terminal computing 
devices and edge computing devices. A new lightweight fast 
text detection method is proposed. This method improves the 
label part of the text detection model and realizes the 
theoretical detection of a large range of continuous text scales 
with 100% coverage. A large number of experiments have 
shown that LFTD is more lightweight and has fewer 
parameters when the accuracy rate is similar to the existing 
text detection models.

Possible research directions in the future, adding LFTD to 
the recognition branch and using CTC Loss, which will be 
combined with text recognition to achieve end-to-end text 
recognition.
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