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Abstract—By offloading intensive computing tasks to the edge 
cloud, mobile edge computing can meet the end-to-end delay 
requirements of milliseconds. A hierarchical edge computing 
offloading framework based on emergency priority is 
proposed in this paper. A resource allocation and task 
scheduling optimization scheme based on service emergency 
priority is proposed to minimize the total delay of the system 
and ensure the minimum delay experienced by high priority 
services. Then, in order to ensure that the delay of high 
priority tasks is still minimum under very dense conditions, a 
dynamic priority task scheduling algorithm (DPTSA) is 
designed on the fog server. Simulation results show that the 
proposed system framework and algorithm can reduce the 
average delay of system tasks, and significantly reduce the 
delay of high priority tasks.

Keywords—Mobile edge computing, Priority, Delay, Resource 
allocation, Task scheduling, Optimization

I. INTRODUCTION

With the development of 5G communication and IoT, 
a large number of mobile devices and their services have 
led to the explosive growth of mobile data traffic, more and 
more mobile applications put forward strict requirements 
for real-time communication and intensive computing [1]. 
In the traditional IoT network, the data of the terminal 
devices is usually transmitted to the cloud server for 
processing. However, the massive amount of IoT device 
data brings a heavy burden to the cloud server and wireless 
link, and the system performance will be affected and 
degraded sharply. [2]. By implementing an MEC server on 
a cellular base station, it pushes the processing of 
computing tasks to the edge of the network close to local 
users, which can provide higher quality of service (QoS) for 
IoT applications and meet the key end-to-end delay 
requirements of 5G networks.

The applications with the highest latency requirements 
in IoT are certain scenarios that are closely related to human 
safety and health. These scenarios not only need to transmit 
warning information timely, but also need to return detailed 
and accurate reports to help users analyze specific 
situations and make accurate judgments. For the two results 
returned by the same batch of application data processing, 
users have two different requirements. The former requires 
extremely low latency but small computations called a 
simple task, while the latter requires large computations but 
delays, it can be tolerated and is called a complex task. 

We propose a hierarchical edge computing offloading 
framework. The first layer are edge nodes that are closer to 

the user equipment with fewer computing resources, and 
the second layer is a fog server which is farther from the 
user and has more computing resources. The edge nodes 
handle simple tasks with a small amount of computation in 
order to quickly return warning messages. After processing 
by the edge node, the tasks are divided into three priority 
levels according to the degree of urgency, and the executing 
time of the tasks generated by the user equipment with the 
highest priority will be significantly reduced.

In recent years, research on edge computing has 
mainly focused on offloading decision-making and 
resource management [3-4]. Mobile users can achieve 
different goals by choosing their own computing offloading 
strategy [5-6]. In the MEC system with a large number of 
offloading users, effective resource allocation becomes the 
key to efficient computing offloading [7]. Tran [8] et al. 
decomposes the original MINLP problem into a resource 
allocation problem with fixed task offloading decisions and 
a task offload problem. Ren et al. [9] studied three models 
of local compression, edge cloud compression and partial 
compression offloading. Due to limited and shared 
resources leading to non-cooperative competition among 
users [10], many works have adopted game-theoretic 
solutions [11-12]. Gu et al. [13] used the matching student 
project allocation game method to provide a distributed 
solution to the joint resource allocation problem 
formulated. Most of the above related work studied 
resource allocation or task scheduling separately, and does 
not consider the priority of users.

In section II, we propose a priority-based hierarchical 
edge computing offloading framework. In section III, we 
study the allocation of wireless resources and computing 
resources. In Section IV, we design the dynamic priority 
task scheduling DPTSA algorithm. In section V, the 
simulation results are shown. Section VI concludes it all.

II. SYSTEM MODEL

A. Hierarchical Edge Computing System

Fig.1 shows the hierarchical edge computing system, 
which contains a fog server, a set of edge nodes

.Each edge node is responsible for a group {1,2,..., }N=N
of local equipment denoted by .The edge node can serve k i
a group of terminal devices ,The task genated from the iM
device of the edge node is denoted as .k i ,i kτ

The initial requirements of the task are expressed ki,τ
as tuple ,where represents the number of , , ,{ , , }i k i k i kC D DL ,i kC
CPU cycles required for simple computation of the task,
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Fig.1 Hierarchical Edge Computing System Architecture

represents the data size of the task, and represents ,i kD ,i kTD
the deadline for completion of the task. After the task is 
simply processed on the edge node, the requirements tuple 
becomes . is the number of CPU ' '

, , , ,{ , , , , }i k i k i k i kC D DL p α '
,i kC

cycles required for the task to perform accurate 
computations on the fog server, is the amount of data '

,i kD
remaining after simply processing, represents three p
priority levels distinguished according to the degree of 
urgency, namely , and . is the proportion 1p = 2p = 3p = ,i kα
of radio resources allocated to the task for the base station.

B. Communication Model

The base station orthogonally allocates spectrum 
resources to the tasks of all user equipment in the system, 
and the total spectrum bandwidth is .The uplink B
transmission rate of the task is denoted as,i kR ,i kτ

,where is the transmit 
2

, ,
, , , 2 2

| |
[ (1 )] log (1 )

r
i B i i B

i k i k i k

h Pd
R p Bα

σ

−

= − + iP

power of the edge node, represents the uplink channel ,i Bh

fading coefficient, is the distance between the base ,i Bd

station and the edge node , is the path loss index, and i r
is the noise power. indicates the proportion of uplink 2σ ,i kα

spectrum resources allocated to edge nodes, and, [0,1]i kα ∈

, is the priority weight. The remaining ,
1 1

1
iMN

i k
i k

α
= =

≤∑∑ ,i kp

amount of data of task processed by the edge node is ,i kτ

denoted as , , is the proportion of data '
,i kD '

, , ,i k i k i kD x D= ⋅ ,i kx

after processing. The communication delay of the task is

.
'
,

,
,

i ktran
i k
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D
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C.  Computation Model

 Computing resources of all edge nodes connected to 
each fog server are equal, denoted as .The computing nf

capacity allocated by the edge node to the task on the device
is recorded as .The sum of computing capacity k edge

kf

allocated to all devices by each edge node should not 
exceed the maximum computing resources of the edge 
node, namely, .Denote as the maximum 

1
iM edge

k nk
f f

=
≤∑ sf

computing capacity of the fog server, indicates the ,
fog

i kf

computing capacity assigned by the fog server to the task 
from the device on the edge node .The sum of computing k i

capacity allocated to all tasks should be less than the 

computing power of the fog server, namely, .,
1 1

iMN
fog

i k s
i k

f f
= =

≤∑∑
The task performs more complex computations on the 

fog server, so the amount of computation is larger, and the 
number of CPU cycles required is more, denoted as

, fog computation delay is .Then the '
, , ,i k i k i kC y C= ⋅

'
,

,
,

i kfc
i k fog

i k

C
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computation delay is expressed as the sum of edge 
computation and fog computation delay, namely,

.
'

, ,
,

,

i k i kcomp
i k edge fog

k i k

C C
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III. RESOURCE ALLOCATION OPTIMIZATION

In the section, we will formulate the delay 
minimization resource allocation optimization problem, which is formulated as follows

        (1)
, ,

' '
, , ,

{ , , } 1 1 ,

min ( )
i

edge fog
i k k i k

MN
i k i k i k

edge fogf f i k i k k i

D C C
R f fα = =

+ +∑∑
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1 1

. . 1: 1, 0, ,
iMN

i k i k
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s t C k iα α
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k

C f f f k
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where C1 is the optimization constraint of the wireless 
resource allocation ratio, which guarantees that the sum of 
the wireless resources allocated to all devices will not 
exceed the maximum bandwidth of the system, and ensures 
that the wireless resource allocation ratio is non-
negative.C2 and C3 are the optimization constraints for 
edge computing and fog computing, respectively. They 
ensure that the sum of computing resources allocated to all 
devices will not exceed the maximum computing capacity. 

In this paper, there is no direct connection between 
wireless resource and computing resource allocation, so the 
joint resource allocation optimization problem is divided 
into two sub-problems, namely, radio resource allocation 
(RRA) and computing resource allocation (CRA).

The RRA problem is a convex optimization problem. 
In order to solve this convex problem, we let

, a Lagrange function is defined as,
2
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Using the KKT condition, the optimal solution for the 
wireless resource allocation ratio is

           (3)
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Similarly, we define a Lagrange function for CRA 
problem, which is expressed as
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Using the KKT condition, the optimal solution for the 
computation resource allocation on edge nodes is

(5),*
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and the optimal solution for the computation resource 
allocation on fog server is
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IV. DYNAMIC PRIORITY TASK SCHEDULING ALGORITHM

We propose a task scheduling algorithm based on 
dynamic priority (DPTSA). The algorithm considers both 
the urgency of the task and the deadline of the task to ensure 
that the tasks with higher priority run first, which improves 
the scheduling performance. 

The DPTSA algorithm is shown in Algorithm 
1.Firstly, we set up three buffers, namely high priority 
class1, medium priority class2 and low priority class3, and 
the task enters the buffer of the corresponding priority; then 
execute tasks in class1, class2 and class3 sequentially, and 
each buffer is scheduled separately; The emergency degree 
indicator is set for the algorithm, which combines the 
waiting time of the task and the task execution time. As the 
waiting time increases, the urgency of all tasks changes 
dynamically. Denote the urgency as , the waiting time of e
the task as , and the remaining execution time of the task x
as, and the urgency of the task is expressed as:

        (7)
1

2

1 0

1 0
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Algorithm 1: DPTSA
1.Initialize: create 3 buffers called class1, class2 and class3 
respectively
2.if a new task arrives:
3. if p == 1:
4. place task in class1;
5. if p == 2:
6. place task in class2;
7. else:
8. place task in class3;
9. if class1 is not empty:
10. while True:
11. update x, y of every task;
12. calculating e of all the tasks in the buffer;
13. pick the task with highest e in the buffer;
14. calculate time piece with age;
15. execute the task in one time piece;
16. if task is not completed:
17. update y, age;

18. place the task back in the buffer;
19. if a task is executed completely:
20. remove the task from the buffer
21. if the buffer is empty:
22. break;
23.if class2 is not empty:
24. executing the same scheduling process as class1;
25.if class3 is not empty:
26. executing the same scheduling process as class1;

V. SIMULATION RESULTS

The default settings of some simulation parameters are 
as follows: The system is configured with 1 fog server and 
10 edge nodes. The number of user equipment managed by 
each edge node is 10~20. For wireless access, the spectrum 
bandwidth of uplink and downlink are equal, we set the 
bandwidth B = 200 MHz. The Edge node transmission 
power = 27 dBm, The channel fading coefficient of MDs iP
follow the exponential distribution with mean 1. The path 
loss factor r = 4. The computing capacity of edge nodes is 
60000 Mega cycles and the computing capacity of fog 
server is 120000 Mega cycles. The computational load of 
the task follows a Gaussian distribution , , 2

1( , )CN μ σ 500μ =
Mega cycles .2

1 100σ =

A. Comparison of different resource allocation strategies

We compared the average delay of system tasks under 
different resource allocation strategies, which are the 
following four strategies: (1)Joint wireless and computing 
resource allocation optimization strategy; (2) Only 
computing resource allocation is optimized, and wireless 
resources are evenly allocated; (3) Only wireless resource 
allocation is optimized, and computing resources are evenly 
allocated; (4) No resource allocation optimization, Evenly 
allocate wireless and computing resources.
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Fig.2 Task average delay of Four Resource Allocation Strategy

Fig.2 reflects the relationship between system delay 
and the total number of tasks. As the number of user 
equipment increases, the delays of all strategies are 
increasing due to limited resources. The joint wireless and 
computing resource allocation optimization strategy 
proposed has the smallest delay, and the non-resource 
allocation optimization strategy has the largest delay. The 
delay of only the computation delay allocation optimization 
strategy is smaller than that of only the wireless resource 
allocation optimization strategy. This is because in this 
system, the transmission delay caused by wireless 
communication is inherently smaller than the computation 
delay, so the optimization effect on the allocation of 
computing resources is more obvious.
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B. Performance of DPTSA

In order to verify the performance of the DPTSA, we 
compare it with the first-in first-out (FIFO) algorithm and 
the pure priority scheduling algorithm (Priority). In order to 
evaluate the performance of the algorithm fairly, a Delay 
Degradation indicator is set, which is composed of two 
parts: the overall task timeout index and the average delay. 
The sum of the overtime indices of all tasks in the system 
plus the average task delay is the delay deterioration index. 
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Fig.3 Delay Degradation with task generation rate

As the task generation rate gradually increases, the 
task timeout index and average task delay of the DPTSA 
algorithm are the lowest. The delay deterioration index of 
the Priority algorithm is lower than that of the FIFO 
algorithm because although the average delay of the two 
tasks is similar, the high priority task timeout index of the 
Priority algorithm is lower than that of the FIFO algorithm. 
The delay deterioration index of the DPTSA algorithm is 
lower than that of the Priority algorithm because although 
both have different priorities, in their respective priority 
buffers, the Priority algorithm is still first in, first out, and 
the DPTSA algorithm is based on the urgency of the task. 
To execute, the average task delay is lower than Priority 
algorithm. In the case of high task density, the performance 
of the DPTSA algorithm is better than other algorithms.

C. Performance comparison of three priority tasks
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Fig.4 Task average delay of different priorities

Since we set up priority-based wireless resource 
allocation, the average delay of high-priority tasks is the 
lowest. The low latency of high-priority tasks is at the 
expense of the performance of low-priority tasks, because 
low-priority tasks are always greater than the overall task 
average delay. With the increasement of task generation 
rate, the number of queues in the system buffer increases, 
and the delay gap between the three priority tasks is getting 
bigger and bigger. This is because the DPTSA algorithm 
proposed in this paper plays a vital role. 

VI. CONCLUSION

In this paper, a priority-based hierarchical edge 
computing offloading system framework is proposed for 
user scenarios where the situation is more urgent, and the 
resource allocation and task scheduling schemes based on 
the system are studied. In order to minimize the system 
delay, firstly, the allocation of wireless resources and 
computing resources is constructed and then their optimal 
solutions are obtained by using KKT conditions. We design 
the DPTSA algorithm, and gives the task scheduling 
algorithm and execution process of the entire system. 
Finally, the simulation results show that the resource 
allocation scheme in this paper can effectively reduce the 
task delay. The delay of high-priority tasks is lower than 
that of other priority tasks, and the DPTSA algorithm also 
has better performance than other scheduling algorithms. 
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