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Abstract—This paper proposes a kind of supervised cas-
caded denoising convolutional auto-encoders (CDCAE), aim-
ing to accurately recover the missing load data in electric
power system. The one-dimensional load data are reshaped as
two-dimensional image for data enhancement, which enables
the convolutional neural network (CNN) to understand the
semantics of load data. Numerical results in comparison with
similar day filling (SDF) clearly validate the effectiveness of
the proposed CDCAE in accuracy.
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I. INTRODUCTION

Big data technology has brought great vitality to the

development of Energy Internet. It takes super large-scale

data as the center, and requires comprehensive collection

of massive data in the electric power system [1]. The data

collected by State Grid have exceeded 60TB per day [2].

However, in the presence of massive data scale, due to ter-

minal equipment failure, transmission channel disturbance

and other interfering factors, the current sampling and

communication systems inevitably suffer from the problem

of data missing.

Generally, the missing data can be classified as contin-

uous and discrete missing [3]. For the crucial measure-

ment data, once there are long-term continuous missing

segments, it can lead to serious safety incidents in power

system. In the other hand, if there are random discrete

missing points, it might result in reduction of signal to

noise ratio (SNR), which degrades the accuracy of state

estimation as well.

To address this issue, various forms of mathematical

methods have been investigated and adopted, including

SDF [4], polynomial interpolation [5], k nearest neighbor

(KNN) [6], and other solutions (e.g., [7] [8]). But these

algorithms are either too sensitive to boundary data, or

unable to perceive data features from a large scale of time,

which turns out poor robustness on long-term continuous

missing situation.

This paper develops a supervised CDCAE model com-

bined with a data reshaping strategy [9], to efficiently

recover the missing load data through image inpainting

technologies [10], as a sort of machine learning applica-

tions in smart grid [11]. The results based on the load data

of Belgium grid (www.elia.be) confirm that this solution

Figure 1. Mild (G1), moderate (G2) and severe (G3) sub masks from

M . The white regions represent normal data with mi or g
(k)
i = 0 ,while

black means missing data with mi or g
(k)
i = 1.

can obtain higher SNR than conventional SDF solutions,

and performs well even at heavy missing rate.

II. PREPROCESSING

Missing data can be modeled via binary mask M as

X ′ = X −X �M (1)

where X = (x1, x2, . . . , xn−1, xn) is the ground truth

data, M = (m1, m2, . . . , mn−1, mn) is the binary

mask in which mi = 0 or 1, � is the element-wise

production operator and X ′ = (x′1, x′2, . . . , x′n−1, x′n)
is the incomplete data which is regarded as input.

Define those normal data in X ′ as Ẋ = {x′i|x′i ∈ X ′,
and mi = 0}, and normalize X ′ as X̂ ′ = (x̂′1, x̂′2, . . . ,

x̂′n−1, x̂′n), and X as X̂ = (x̂1, x̂2, . . . , x̂n−1, x̂n), where

x̂′i = (1−mi)(
x′i −min(Ẋ)

max(Ẋ)−min(Ẋ)
0.99 + 0.01) (2)

x̂i =
xi −min(Ẋ)

max(Ẋ)−min(Ẋ)
0.99 + 0.01 (3)

After that, 0 in X̂ ′ will uniquely represent missing data

while all the normal data range from 0.01 to 1. However,

the normalized ground truth data in X̂ might be out of

range [0.01,1].

As Fig. 1 shows, the missing segments in M with mi =
1, will be divided into three sub masks G1, G2 and G3

as proportions of 40%, 30% and 30% and named as the

283

2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science
(DCABES)

2473-3636/20/$31.00 ©2020 IEEE
DOI 10.1109/DCABES50732.2020.00080



(a)
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Figure 2. Visualization of data matrix by gray scale image. (a) diagram
of a “generalized” image. (b) example of AX̂′ and AX̂ .

mild, moderate and severe sub masks respectively, where

Gj = (g
(j)
1 , g

(j)
2 , . . . , g

(j)
n−1, g

(j)
n ), and

G1 +G2 +G3 = M (4)

g
(1)
i + g

(2)
i + g

(3)
i = mi (5)

Assume the number of sampling points per day is m,

and for dataset within k days set n = km. Then reshape

X̂ ′ (X̂) as a k-by-m matrix AX̂′ (AX̂ )

AX̂′ = Reshaping(X̂ ′) = [ai,j ]k×m (6)

where ai,j = x̂′(i−1)m+j .

As Fig. 2(a) presents, since m is an approximate period

of X̂ ′, AX̂′ can be visualized through a gray scale image,

which will be further considered as a “generalized” image.

Fig. 2(b) left and middle demonstrate an example of gray

scale images of AX̂′ and AX̂ with shape of 120-by-96

(k = 120, m = 96) from Belgium grid, where the regular

light and dark gray stripes in the right corresponding to

weekdays (high load) and weekends (low load) separately.

To provide more adjacent data for the left and right

edges of AX̂′ , two k-by-p redundant matrices BX̂′ and

CX̂′ are designed as follow

BX̂′ = [bi,j ]k×p CX̂′ = [ci,j ]k×p (7)

where p is the padding depth and

bi,j =

{
ai−1,m−p+j i > 1

0 i = 1
ci,j =

{
ai+1,j i < k

0 i = k
(8)

Let L = m+ 2p. Combine AX̂′ with BX̂′ and CX̂′ , a

k-by-L padding matrix ZX̂′ is generated as

ZX̂′ = Padding(AX̂′) = [BX̂′ AX̂′ CX̂′ ]

= [zi,j ]k×L (9)

Figure 3. Structure of CDCAE.

To reduce the size, ZX̂′ will be separated into L-by-

L slices (square submatrices) SX̂′ , and the t-th slice is

labeled as SX̂′(t)

SX̂′ = Slice(ZX̂′) (10)

SX̂′(t) = [s
(t)
i,j ]L×L (11)

where s
(t)
i,j = z(t−1)m+i,j and t ≤ �k−2p

m � is met.

In addition,

Core(SX̂′(t)) = [y
(t)
i,j ]m×m (12)

is defined as the core area of SX̂′(t), where y
(t)
i,j =

s
(t)
i+p,j+p

Similarly, these operations will be conducted on X̂
and Gk to obtain slices SX̂ and SGk

respectively, which

ensures the masks always hold the same shape as the data.

So far, the missing data can be regarded as noise or

missing regions in “generalized” image, and moreover the

original problem has been transformed into the issues of

image inpainting and denoising.

III. NETWORK STRUCTURE

As Fig. 3 illustrates, there are three denoising con-

volutional auto-encoders (DCAE1, DCAE2 and DCAE3)

cascaded in CDCAE, corresponding to the three sub

masks, where the missing data on SGk
will be recovered

k times.

Every DCAE has four convolutional layers in which the

first two as encoder and the last two as decoder, followed

by a filter layer. The padding model is ‘same’, the stride

is one and the activation function is Relu for all those

convolutional layers. The functions of filter layers are
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Figure 4. Generation of M.

Figure 5. Comparison of SDF and CDCAE in SNR with respect to
missing rate.

explained as follow.

F1 = SX̂′ + (Conv4− SX̂′)� (SG1 + SG2

+SG3) (13)

F2 = F1 + (Conv9− F1)� (SG2 + SG3) (14)

F3 = F2 + (Conv14− F2)� (SG3) (15)

One of the most difference from the conventional DCAE

[12] is that, here the encoder is upsampling and the

decoder is subsampling, contrary to the general case.

Besides, the decoder is made of convolutional layers

instead of deconvolutional layers. Finally, the tensors (not

only the output) always hold the same height and width

as the input, i.e. L-by-L. These configurations enable the

CDCAE to encode the data features without severe loss of

semantics, and then recover the missing data as accurately

as possible.

Specifically, SG1 will be recovered once by DCAE1,

SG2 will be recovered twice by DCAE1 and DCAE2, and

SG3
three times by DCAE1, DCAE2 and DCAE3.

The loss function L is defined as the root mean square

error (RMSE) on the core area of slices

L =

√
1∑
mi
‖Core(F3 − SX̂)‖22 (16)

The final recovered data can be obtained simply by the

reverse operation of the preprocessing in II.

IV. NUMERICAL RESULTS

Based on the load data of Belgium grid in every 15

minutes during 2014 to 2020, the proposed CDCAE will

Figure 6. Input, output of SDF and CDCAE and ground truth in two-
dimensional at missing rate of 20%, 40%, 80% and 95% (only the core).

be tested on different missing rate γ ranging from 5% to

95%, in comparison with SDF, where

γ =

∑
mi

n
(17)

Set m = 96 and p = 9, thus the size of slices is 114-by-

114. The number of data slices is 540, in which 432 for

training and 108 for testing. For both of the training and

testing sets, the missing mask M is generated by stratified

sampling, as Fig. 4 shows, in which

NMD = [nγ] (18)

NMS = random([NMDα], [NMDβ]) (19)

ALMS =
2

α+ β
(20)

where NMD is the number of missing data, NMS is the

number of missing segments, α and β are distribution

coefficients (α ≤ β) which determine ALMS the average

length of missing segments. Here α and β are fixed as 1
120

and 9
120 , which means ALMS is 24 (a quarter day).

Consider the recovery error as noise, thus SNR is

defined as

SNR = 20 lg(
‖Core(SX̂)‖2

‖Core(F3 − SX̂)‖2 ) (21)

It is calculated with respect to missing rate 5% to 95%,

for CDCAE, SDF as well as the input data before recovery.

Fig. 5 indicates the SNR results. The average SNR

of CDCAE is 26.35dB while 19.63dB for SDF. It turns

out that CDCAE outperforms SDF especially under heavy

missing rate over 80%. Because then there hardly exists
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Figure 7. Input, output of CDCAE and SDF and ground truth in one-
dimensional at missing rate of 50%, 70% and 90%.

any complete day without missing, which makes it nearly

impossible for SDF to match similar days in dataset but

only through linear interpolation and results in rapid drop

at high missing rate. In the presence of extreme condition

such as 95% missing rate, CDCAE is still able to keep a

satisfied SNR more than 18dB from the input data with

SNR less than 0.3dB, where it is only 10dB by SDF. In

addition, CDCAE can be pretrained in advance and then

used efficiently to process more than one hundred days

simultaneously, but SDF is much slower because of the

time complexity O(n2).

Furthermore, Fig. 6 displays the corresponding input,

output of SDF and CDCAE, and ground truth in two-

dimensional at different missing rate. Fig. 7 gives partial

results reshaped back to one-dimensional. Obviously, CD-

CAE is much more powerful than SDF, and SDF will be

easily degenerated as linear interpolation at high missing

rate. These further evaluate the effectiveness of CDCAE.

V. CONCLUSION AND FUTURE WORK

This paper presents a novel CDCAE model through re-

shaping the one-dimensional load data as two-dimensional

image, to recover the missing data based on the prin-

ciples of image inpainting, which guarantees a satisfied

SNR even at extreme missing rate. Compared with the

SDF solutions, CDCAE can comprehensively perceive and

learn the features of load data in variant time scale, which

ensures better performance. The numerical result confirms

the validity on the proposed CDCAE model in accurately

recovering the missing load data under different missing

rate.

In future, the proposed solution needs to be further eval-

uated and validated through more real-time series datasets

from various forms of application domains, e.g., renewable

power generation, advanced metering and power quality

condition monitoring.
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