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Abstract—Recently, in the area of artificial intelligence and
machine learning, subspace clustering of multi-view data is a
research hotspot. The goal is to divide data samples from
different sources into different groups. We proposed a new
subspace clustering method for multi-view data which termed
as Non-negative Sparse Laplacian regularized Latent Multi-
view Subspace Clustering (NSL2MSC) in this paper. The
method proposed in this paper learns the latent space
representation of multi view data samples, and performs the
data reconstruction on the latent space. The algorithm can
cluster data in the latent representation space and use the
relationship of different views. However, the traditional
representation-based method does not consider the non-linear
geometry inside the data, and may lose the local and similar
information between the data in the learning process. By
using the graph regularization method, we can not only
capture the global low dimensional structural features of data,
but also fully capture the nonlinear geometric structure
information of data. The experimental results show that the
proposed method is effective and its performance is better
than most of the existing alternatives.

Keywords-Multi-View Representation, Subspace Clustering,
Latent Representation, Graph Regularization, Laplacian
Matrix.

L.

Clustering analysis is a commonly used processing and
analysis tool in artificial intelligence and machine learning
fields. At present, researchers have proposed a large amount
of clustering analysis methods, and have been widely used.
However, due to the continuous progress of data science,
the rapid development of data sources and access methods,
the data obtained is more and more complicated. Among
them, multi-view data is a wide-ranging phenomenon.
However, traditional clustering methods are mostly
proposed and developed for single-view data, in the face of
multi-view data clustering, the performance is not ideal.
Therefore, how to design a clustering analysis algorithm for
multi-view datasets is a huge challenge. In order to
effectively solve the problem of multi view data clustering,
researchers have proposed many multi view cluster analysis
methods from many aspects.

Numerous studies have shown that high-dimensional
data can usually be embedded in the low-dimensional
subspaces, so the subspace learning algorithm for multi-
view data based on spectral clustering has been widely
applied and achieved good performance. Representative
algorithms include subspace clustering algorithm for multi-
view data (MSC)[1], latent subspace clustering algorithm
for multi-view data (LMSC) [3] and diversity-induced
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subspace clustering algorithm for multi-view data
(DIMSCO)[2].

In this paper, a Laplacian regularized multi-view
clustering method based on latent representation is proposed.
At the same time, we further introduce sparse and non-
negative constraints in the algorithm model to improve the

performance and rationality of the algorithm.

IL.

Multi-view datasets contain a wealth of information
from multiple sources, which is very useful for clustering
analysis. Therefore, studying clustering methods for multi-
view data is very important. Based on the single-view
subspace clustering algorithm, LT-MSC [4] is proposed.
The algorithm model can be expressed as follows:
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mingy gv||IZ|l. + AIIE ||,
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In the above optimization function, Z is the coefficient
of the data representation, Z = @8(Z%,--,Z™), and E is the
reconstruction error, E = [E%, -, E™] () is the construction
method of a tensor Z with a dimension of n X n X m by
combining the representation coefficient matrix
Z¥(v=1,+,m) of different views into one 3-order tensor.
Finally, each view’s representation is merged through
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However, the fusion method is too simple to fully and
accurately explore the complementary information between
different view data samples

At present, there are also many studies that use weight-
and rules to fuse multi-view representations. However, it
still cannot solve the fuse error problem. In the single-view
subspace clustering analysis algorithm, the Latent Space
Sparse Subspace Clustering (LS3C) [5] algorithm can
simultaneously reduce the dimensionality and sparse
representation. Inspired by this idea, the work in [3]
proposed a LMSC method, which treats different views as
projections from the same latent space and performs
subspace aggregation on this latent space. The LMSC model
can be expressed:

mmz,P,H.E,,.Er"E"z,l + AlZ]l.
sLE = [Ey; E,], H=HZ +E,,

X=PH+Eh,PPT=[ (3)



the above

P =[P, ,(P")T jsa projection matrix of the multi-
view data and the data set is represented as
X =[x, x™)T

However, there is a problem of this method is that the
complementary information between different data views is
ignored, and no structural constraints are used on the
representation coefficient matrix Z. In addition, this kind of
method needs to use the representation coefficient matrix Z
to do spectral clustering to get the final clustering partition
result. Therefore, the accuracy of the coefficient matrix Z of
the data representation affects the accuracy of the final
result.

In optimization problem,

III.  NON-NEGATIVE SPARSE LAPLACIAN REGULARIZED

LATENT MULTI-VIEW SUBSPACE CLUSTERING

In this paper, we do some research on the subspace
clustering problem of multi-view latent representations.

@ wn¥
Given a multi-view data set (s - ]}m with V
different views, the number of samples is N. Many studies
of the researchers have shown that different data views can
be represented by the same latent representation space.
Therefore, the goal of this method is to find such a common
latent representation space h for each data sample point.

A. Objective Function

The objective function of the proposed Non-negative
Sparse Laplacian regularized Latent Multi-view Subspace
Clustering (NSL2MSC) is represented as

minp y 75, g NZ . + 44112111 +
Ao Bl = 2 Wiy + Asl1Enllz.s + A4lIE; Nz
st.H=HZ+E, X = PH +E,,
PPT=1,Z2>20 4)
where P and X and are reconstruction models aligned
and the multi-view observations, respectively. Er and Ex
represent the errors because of the subspace representation
and the latent representation respectively.

In the objective function, the third term is the constraint
term added based on the manifold assumption. Under the
manifold assumption, the relationship between the two
samples can be expressed as

min Eu‘uzi - ZIHZWKI

®)

Where, z; and z; are respectively the coefficients matrix
of sample points x; and x; under some transformations.

Manifold constraints are important for the construction
of many algorithm models, such as dimension reduction
algorithm, clustering algorithm and semi-supervised
learning algorithm. Where D is a diagonal matrix, which
represents the degree of the matrix. D;; is the i-th diagonal
element, and its value is the sum of all the similarity
relationship associated with y, i.e. i = LW , Therefore,
we can express the objective function of graph Laplacian as
follows [6].
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In addition, the objective function of graph embedding
(5) can easily be expressed as follows

min tr(ZLZ™)
Therefore, through these algebraic transformations, the
model of the proposed method can be represented as the
following matrix form

minP.H,Z,Eh,E,-”ZIL + 4,121, +
A,tr(ZLZ™) + A|E ]l
st.E = [En;E, ), H = HZ +E,,
X=PH+E, PPT=1,2>0 ©

B. Model Optimization

The objective function in Eq. (6) proposed in this paper
can get a latent representation of the data and get meaningful
similarity matrix from the latent representation which learns
from multiple views. Although for the variables in the
algorithm model, such as P.H.Z.E, and E. the proposed
method cannot guarantee joint convexity. For each variable
we can perform iterative optimization by fixing the other
variables separately. For example, LADMAP [7] algorithm
is an effective optimization method to solve this problem.

In order to optimize the objective function, we first
introduce an auxiliary variable J into the algorithm model to
separate the objective function. In this way, we describe the
optimization problem:

minP.H,Z.Eh,E,-./"ZI AL+
A tr(ZLZT) + 13||E||2,1
st.E=[EyE],H=HZ+E,,

X=PH+E, PPT=1,Z=],]20 @

The augmented Lagrange function of the above problem
is
L(P,H,Z,Eh,Er,j)

= ||Z|[, + A4/ 1l; + A,tr(ZLZT)
+ AllENl,, + ®(My,H — HZ — E,)
+®(M;,Z - ])
+ ®(M,, P — PH — E})

In addition, in order to facilitate the subsequent

calculation and representation, we give the definitions of ®:

=£ 2
®(C,D) =ZlIDll +(C.D) ,where p is a positive penalty

scalar and (-,) defines the matrix inner product. According
to LADMAP, by fixing the other variables, the variables P,
H, Z, E, J can be updated by solving the following
optimization problems iteratively.

(1) P-subproblem:

P* = argmin ®(M;, X—PH = E;)

st PPT =] (8)

(2) H-subproblem:

H* = arg min ®(M,,X — PH — E}) +

®(M,,H — HZ — E,) ©)
(3) Z-subproblem:



Z* = argming || Z||, +
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q(Z,Ey, Jio M, MY) = A,tr(ZLZT) +
ﬁ”z—]k+lM§ ’ . H—HZ — Ef +1M{‘ )
2 u P u i
(4) E-subproblem:
E* = argming||E|l,, +
®(M;,X — PH — E,) + ®(M,,H — HZ — E,)
= pan 1 —rh2
g arg mlnE“"Ellz.l +2"E G”F (11)

Where the matrix G in the above formula is obtained by

connecting the two matrices (X — PH + M;/u) and

(H —HE+My/¥ )vertically‘

(5) J-subproblem:

J* = arg ming,, A4|l/1l, + P(My, Z —])
= arg min;,o A/l +§|U = (Z +My/w)% (12)

(6) Updating Multipliers:

M, =M, +u(H—-HZ-E,)
M, =M, +u(Z-))
M; = M5 + u(X — PH — Ey)

C. Complexity and Convergence

The method proposed is optimized through six
subproblems. Where, the time complexity of solving the P-
subproblem is O(k*d+d®) | n, kand d respectively
represent the number of data samples, the latent space
dimensions and the dimensions of multi-view data features.
To solve the J-subproblem, the time complexity is 0(n%),
To solve the H-subproblem, Bartels Stewart algorithm was
used to solve Sylvester equation, and the time complexity
was 0(k*) . In the process of solving the Z-subproblem
optimally, the main task is to compute the inverse of the
matrix, and the time complexity is 0@®) .For E
subproblems and Lagrange multiplier calculations, the main
task is to calculate matrix multiplication, with the time
complexity '0(dkn + kn?)_ Thus, the total time complexity of
cach iteration is 0(k*d + d* + k* + n® + dkn + kn®) | The
total time complexity can be expressed as 0(d®+n?)
because of k < d. The convergence of the algorithm is
difficult to prove, but the effect of the algorithm on the real
dataset shows that the proposed method has strong
convergence and stability even if H is randomly initialized.

IV. EXPERIMENTS

In the experiment, we chose four real datasets
(MSRCV1 [8], extended YaleB, Still DB [9], BBCSport
[10]) as test data to verify the effectiveness of the proposed
method. And some the state-of-the-art algorithms including
SPC, LRR[11],Co-Reg SPC[12],RMSC[10] and LMSCJ3]
are adopted as the compared methods.

A. Performance Comparison

To evaluate the characteristics of each algorithm, we
adopt four evaluation indexes, NMI, ACC, F-measure and
RI. For the 5 compared algorithms in the experiment, we
adjust all parameters to the best performance in the
corresponding paper. In the experiment, for all experimental
data sets, the dimension of latent space of the proposed
algorithm is set to' K = 500, and the value range of three
parameters 41,45, 43 is from {1e7% 17, 1e7, 1,1e, 1e?, 1€}
Each experiment is run independently for 30 times and the
results are recorded in Table 1-4.

TABLE 1. CLUSTERING RESULTS ON THE MSRCV 1
Meth AveljMI AveI:CC :vzfeasure AverRI
od Std Std Std Std
age age age age
SPC 0.59 0.0 0.68 0.0 0.55 0.0 0.86 0.0
61 267 31 441 66 414 98 089
LRR 0.52 0.0 0.60 0.0 0.47 0.0 0.86 0.0
35 153 63 025 43 056 12 007
g:é 0.60 0.0 0.69 0.0 0.55 0.0 0.90 0.0
SpC 56 134 93 123 81 203 25 028

RMS | 059 | 00 | 071 | 00 | 060 | 00 | 088 | 0.0
C 87 |09 | 61 |om2| 92 | 151 | 86 | 023
067 | 00 | 081 | 0.0 | 067 | 00 | 090 | 00

IMSCH o4 Lz | 21t [ s | 13 | use | 27 | o1
NSL2 | 072 | 00 | 084 | 0.0 | 070 | 00 | 092 | 00
Mmsc | o6 | 121 0 |01 | 37 | 126 | 58 | 026

TABLE II. CLUSTERING RESULTS ON THE EXTENDED YALE B
Meth AveljMI AveI:CC :vxeasure AverRI
od Std Std Std Std
age age age age
SPC 0.38 0.0 0.38 0.0 0.30 0.0 0.23 0.0
07 115 15 349 49 117 47 139
LRR 0.63 0.0 0.62 0.0 0.52 0.0 0.45 0.0
45 048 86 145 63 069 11 019
](1:; 0.18 0.0 0.20 0.0 0.17 0.0 0.08 0.0
SPC 19 054 73 076 03 008 82 006

RMS 0.16 0.0 0.18 0.0 0.16 0.0 0.07 0.0
C 27 119 68 136 72 107 18 123

LMSC

NSL2 0.80 0.0 0.78 0.0 0.74 0.0 0.71 0.0
MSC 26 117 18 120 06 038 21 058

TABLE III. CLUSTERING RESULTS ON THE STILL DB
Meth < NMI n ACC :—Measure n RI
od V| gta | YT | std | AV | st | AV | std
age age age age

0.10 0.0 0.29 0.0 0.22 0.0 0.73 0.0

SpC s6 | 075 | 28 |o6s | 22 | o013 | 19 | 063
LRR_| 011 [ 0.0 [031 [00 [024 [ 00 [073 [ 00

25 | 026 | 46 | o041 | 73 | o051 | 53 | 008
g‘)' 0.10 | 00 | 027 | 0.0 | 023 | 00 | 074 | 0.0
s;:é ss |o1s | o1 | o028 | 17 |03 | 14 | 004

RMS | 011 | 0.0 | 029 | 00 | 023 | 00 | 073 | 0.0
C 88 | o063 | 17 | 197 | 83 | 204 | 59 | osi
014 | 00 | 032 | 00 | 027 | 00 | 074 | 0.0

IMSC 1 s | o036 | 80 | 031 | 09 | 058 | 26 | 002
NSL2 | 015 | 00 | 034 | 0.0 | 028 | 00 | 0.75 | 00
Msc | 21 |oa7 | 42 |oss | 38 | o062 | 69 | 006

TABLE IV. CLUSTERING RESULTS ON THE BBCSPORT
Meth < NMI n ACC :—Measure n RI
od Ver | gea | AV | std | AV | st | YT | std
age age age age

0.70 0.0 0.80 0.0 0.76 0.0 0.89 0.0

SpC 84 058 05 332 33 035 19 008




ke | 069 [00 [ 079 [ 00 [ 077 | 00 | 088 | 0.0
83 | o022 13 |o3s| 15 |28 ] 16 | 015
ggg 072 | 00 | 075 | 00| 077 | 00 | 089 | 00
4 | oos | 56 | 057 ] 22 |o13]| 30 | 006

SPC
RMS | 081 | 0.0 | 084 | 00 | 087 | 00 | 092 | 00
C 33 | 102 28 | 30| 72 | 090 | 65 | 027
082 | 0.0 | 090 | 0.0 | 088 | 00 | 094 | 00
IMSC 1 "5 | o7 | 31 o052 | 71 | o071 | 65 | 006
NSLZ | 085 | 0.0 | 094 | 00 | 090 | 00 | 096 | 00
MsC | 36 | o063 | 36 | o067 | 48 | oss | 17 | ol

Table 1 shows the clustering results on the MSRCV1
data set. On the MSRCV1 dataset, we can see that the
proposed method is much better than the compared method.
The reason behind this is that the latent representation space
learned can make better use of multiple views of data.

Table 2 shows the clustering performance on the
Extended YaleB dataset. The clustering performance of
most algorithms on this dataset is poor, the main reason is
that the illumination changes greatly in the dataset, which
seriously affects the clustering performance. However, the
NSL2MSC algorithm proposed in this paper has achieved
better results. It is 7.95%, 4.9%, 11.47% and 12.96% higher
than LMSC algorithm in NMI, ACC, F-measure and RI
indexes, respectively.

Table 3 shows the clustering results on the still DB
dataset. The clustering performance of each algorithm is not
very good. However, from the four indicators, the
NSL2MSC algorithm proposed in this paper has achieved
relatively promising clustering results.

Table 4 shows the clustering results on BBCSport
dataset. The clustering performance of NSL2MSC proposed
in this paper is at least 2% higher than that of RMSC.
Compared with LMSC method, our NSL2MSC method still
achieves better result.

B. Parameters Effect

In the NSL2MSC algorithm model proposed in this
paper, there are several regularization parameters. Next, the
Extended YaleB data set is taken as an example to test the
effent of the four parameters 1,,1,, 15 and K on ACC and
NMI. We change one parameter while fixing the other.
Figure 1 shows the ACC and NMI results for different
parameter settings on the Extended Yale B dataset. It
calearly can be seen that the results show that in a large
range of parameters, the NSL2MSC algorithm is superior to
other algorithms.

anaton

Valuss ot ACC

Valuss of ACC and NI
®.

Figure 1. The parameter effect of 4142:4; and K o Extended Yale-B
dataset.
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V.

In this paper, a new multi view subspace clustering
method was proposed, which is called NSL2MSC. The
main innovation of this algorithm lies in the use of graph
regularization to make full use of the complementary
information among views in the process of learning multi
view latent subspace representation. In this way, this
method can not only represent the global information of the
data, but also can capture the local geometric structure
information of the data. A large number of image clustering
experiments show the effectiveness of this method.

CONCLUSION
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