
Siamese Network cooperating with Multi-head Attention for semantic sentence
matching

Zhao Yuan
School of Internet of things Engineering

Jiangnan University
Wuxi,China

e-mail: zhaoyuansir@foxmail.com

Sun Jun
School of Internet of things Engineering

Jiangnan University
Wuxi,China

e-mail: junsun@jiangnan.edu.cn

Abstract—To compare a pair of sentences is a fundamental
technology in many NLP tasks. According to the difference
between the pair of sentence, we divide semantic sentence
matching into two situations: Situation A is that the pair of
sentences are worded with a context relationship, Situation B
is that two are equal in semantics. Models for Situation A
works in Situation B too, so prior deep work mostly model
each sentence’s representation considering the interaction of
the other sentence simultaneously. However, models designed
for Situation A bring redundant information for Situation B.
In this paper, for sentence pairs with equivalence, we present
a deep architecture with comparison-interaction separated to
match two sentences, which based on Siamese network for
comparison and multi-head attention for interaction
information between sentence pairs. Experimental results on
the latest Chinese sentence matching datasets outline the
effectiveness of our approach.

Keywords- Siamese network; Multi-Head Attention;
Semantic Matching;

I. INTRODUCTION

The purpose of modeling a pair of sentences is to
distinguish the relationship between two sentences by
comparing the semantics of them. In different tasks[1-2], we
want to divide them into two situations: Situations A is the
context relationship in Natural Language Inference, Answer
Selection; Situations B is the equal relationship in
Paraphrase Identification, Semantic Textual. Sentence pairs
in Situations A are different in semantics, but they are
related to each other, sentence pairs in Situations B are same
in semantics. There is a key difference between the two
situations: the percentage of same words in sentences pair
in Situation A are higher than B. Table 1 shows examples
of both cases.

TABLE 1. DIFFERENT SAMPLES IN SITUATION A AND B
Situations Tasks Sentence A Sentence B

Situation A Natural
Language
Inference

A soccer game
with multiple

males playing.

Some men are
playing a sport.

Answer
Selection

How to
participate in
meetings on

online d uring
the outbreak?

You can use a
cloud-based
peer-to-peer

software
platform called

Zoom.
Situation B Paraphrase

Identification
What shoud I
do to avoid
sleeping in

class?

How do I not
sleep in a

boring class?

Semantic
Textual

Similarity
? ?

The division of semantic matching tasks into these two
situations has never actually been mentioned before. The
reason we split two situations is the need for more
lightweight and effective models for Situation A. We will
consider both the semantic differences and the interaction
between the two sentences simultaneously, but the way we
use differs from some existing models[3-6] etc. We propose
a model which construct the “Siamese” architecture by two
bi-directional GRU to encode two sentences in the same
embedding space, and then aggregate the two sentences
vectors using Jaccard distance. At the same time, we apply
a mechanism called Multi-Head Attention to interact the
word vectors of the two sentences. Finally we get the final
decision by combing the aggregated vectors both from
“Siamese” architecture and Multi-Head Attention. We call
it SNMA shorted for Siamese Network cooperating with
Multi-head Attention. Fig. 1 gives an outline of SNMA
based on Siamese network for comparison and multi-head
attention for interaction information between sentence pairs.

Sentences P
Embedding

Sentences Q
Embedding

BatchNorm &
SpatialDropout

Maxpool & LayerNorm &
Jacard

Avgpool & LayerNorm &
Jacard

Add & Pool
& LayerNorm

Concat

Multi-head Attention

BatchNorm &
SpatialDropout

Figure.1 Overview of our approach SNMA: Siamese Network
cooperating with Multi-head Attention.

235

2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science
(DCABES)

2473-3636/20/$31.00 ©2020 IEEE
DOI 10.1109/DCABES50732.2020.00068

II. OUR APPROACH

In our notation, we have two sentences P = {p1, p2,···,
pm} and Q = {q1, q2, ···, qn} where P is a sentence with m
words and where Q is a sentence with n words, the pi or qi
will be encoded into an embedding of 300-dimensional
vector. The goal is to predict a label y∈{0, 1} that indicates
the logic relationship between P and Q, 0 means synonym
pairs and 1 means non-synonym pairs.

A. Input layer
In this layer, we encode the sentences with pre-trained

vectors and do some works on the vectors.
1) Embedding: Since the datasets are designed for

Chinese short text semantic matching task, we can token
the sentences into words or characters. It has been proved
that the model based on word-level in Chinese datasets is
better than that based on character-level [8]..

We use the jieba [9] to do word segmentation for the
two Chinese sentences, and we get the pre-trained word
vectors on the relevant corpus in advance using Word2Vec
[13]. We map each word or character to a high-dimensional
vector space using these pre-trained word vectors. We
found that trainable embedding layer may led to overfitting
during training, so we set the embedding layer fixed. Fixed
embedding can reduce the difference of word vectors
between train-datasets and test-datasets. Now we have
changed two sentences to ௉ܸ ∈ ܴ௠×ௗ and ொܸ ∈ ܴ௡×ௗ ,
where d is the dimension of the word vector.We set d=300
for both word vectors and character vectors in order to try
the mixture of two kinds of vectors.

2) Normalization: The representation P and Q is
passed to a Batch Normalization [10] layer and a Dropout
[11] layer, and the Dropout is SpatialDropout [12] actually
which is proposed in image field. SpatialDropout set the
elements in same dimension zero. Different dimensions in
word vectors represent different semantics, so we can get
different combinations of semantic information by zeroing
different dimensions of word vectors. We get the
representation V୔ ∈ R୫×ୢ and V୕ ∈ R୬×ୢ:௉ܸ = SpatialDropout (BatchNorm (௉ܸ)) (1)ொܸ = SpatialDropout (BatchNorm (ொܸ)) (2)

B. Comparison: Siamese Network with Bi-GRU
In this layer, we extract the difference of sentences

pairs with ‘Siamese’ architecture.
1) Encoding: We employ two Bi-GRU to encode the

two sentences in order to learn the context around each
word and get the representation of each word:ℎ௜௉=BiGRU (ℎ௜ିଵ௉ , ௜ܸ௉), i = 1,..., M (3)ℎ௜ொ=BiGRU (ℎ௜ିଵொ , ௜ܸொ), i = 1,..., M (4)

Where ௜ܸ௉ denotes the i-th word vector of P passed through
input layer, ௜ܸொ denotes the i-th word vector of Q passed
through input layer, ℎ௜௉ denotes the i-th element vector of P
passed through two Bi-GRU encoding, ℎ௜ொ denotes the i-th
element vector of Q passed through two Bi-GRU encoding.
We add two Bi-GRU encoding vectors for each word to get
the final representations.

2) Pooling and Normalization: Pooling layer is used
to extract features and minimize the dimensions.
Considering the effect of sentence’s length on summation
mechanism and the robustness of SNMA, both global
average pooling and global max pooling are used at the
same time. We can get the vectors ௔ܸ௩௚௉ , ௠ܸ௔௫௉ , ௔ܸ௩௚ொ , ௠ܸ௔௫ொ :௔ܸ௩௚௉ =∑ ௏೔ು௠௠௜ୀ଴ (5)

௠ܸ௔௫௉ ௜ୀ଴௠ݔܽ݉= ௜ܸ௉ (6)

௔ܸ௩௚ொ =∑ ௏೔ೂ௡௡௜ୀ଴ (7)

௠ܸ௔௫ொ = ௜ୀ଴௡ݔܽ݉ ௜ܸொ (8)
Where ௜ܸ௉ denotes the i-th word vector of P passed through
the upper layer, ௜ܸொ denotes the i-th word vector of Q
passed through the upper layer; ௔ܸ௩௚௉ represents the
sentence vector of P after global average pooling ௠ܸ௔௫௉
represents the sentence vector of P after global max pooling; ௔ܸ௩௚ொ represents the sentence vector of Q after global
average pooling ௠ܸ௔௫ொ represents the sentence vector of Q
after global max pooling.

Then we adopt a LayerNormalization [16] to optimize
easily and get a better result. With Layer Normalization,
the neuron inputs of same layer have the same mean and
variance; while with Batch Normalization, the neuron
inputs of same batch have the same mean and variance. Due
to Layer Normalization being insensitive to batchsize and
the length of a sequence, we can get better result instead
Batch Normalization. The LayerNormalization formula is
as follows: ௜ݑ = 1݉ ෍ ௜௝௠௝ୀଵݔ (9)

௜ଶߪ = 1݉ ෍ ଶ௠௝ୀଵ(௜ݑ−௜௝ݔ) (10)

௜௝̂ݔ = ௜௝ݔ − ௜ଶߪ௜ඥݑ + ߝ (11)

3) Aggregation: Now we have four sets of pooling
vectors. In this layer, we need to aggregate and compare
sentences. Instead of using four-arithmetic operations
between sentences vectors, we only use element-wise
Jaccard distance to measure the distance between sentences
vectors in each dimension. The Jaccard distance formula is
as follows:

f(௜ܸ௉, ௜ܸொ) = ∑ ௫೔௬೔∑ ௫೔మା∑ ௬೔మି∑ ௫೔௬೔ (12)

௠ܸ௔௫ = f(௠ܸ௔௫௉ , ௠ܸ௔௫ொ) (13)௔ܸ௩௚ = f(௔ܸ௩௚௉ , ௔ܸ௩௚ொ) (14)௠ܸ௔௫ represents the aggregated vectors from ௠ܸ௔௫௉ and ௠ܸ௔௫ொ calculated by Jaccard distance, ௔ܸ௩௚ represents the
aggregated vectors from ௔ܸ௩௚௉ and ௔ܸ௩௚ொ calculated by
Jaccard distance.

We concatenate both ௔ܸ௩௚௉ and ௔ܸ௩௚ொ as ୡܸ୭୬ୡୟ୲ୣୢ, then
we use activation function ReLU [16] on it:୫ܸୣ୰୥ୣୢ =ReLU(ୡܸ୭୬ୡୟ୲ୣୢ) (15)୫ܸୣ୰୥ୣୢ represents the sentences pair aggregation
representations, it will be aggregated will another
aggregation representations from the block we are going to
explain.

236

C. Interaction: Multi-Head Attention
In this layer, we extract the interactive features of

sentences pairs with Multi-Head Attention.
1) Encoding: As shown in Fig. 1, we concatenate V୔ ∈ R୫×ୢ and V୕ ∈ R୬×ୢ as V୲ୣ୶୲ ∈ R(୫ା୬)×ୢ , then we

pass it through a multi-head attention[16] to capture the
interaction between sentences pair. The attention we
applied is ‘Scaled Dot-Product Attention’:

Attention(Q,K,V) = softmax(ொ௄೅ඥௗೖ)V (16)

Attention(௧ܸ௘௫௧ , ௧ܸ௘௫௧ , ௧ܸ௘௫௧) = softmax(௏೟೐ೣ೟௏೟೐ೣ೟೅ඥௗೖ) ௧ܸ௘௫௧(17)

where Q,K,V represent query, key and value respectively, ݀௞ is a hyperparameter. We use the self-attention to encode
the concatenated sentences, so Q,K,V all equal to ௧ܸ௘௫௧ .
Multi-head attention can use different attention to represent
different locations, get better semantic information, and
prevent overfitting effectively:௜ܸ௡௧௘௥ = Multi-Head(Q,K,V)= Concat(head1,head2,…,head8)Wo

(18)
headi = Attention(Q ௜ܹொ; K ௜ܹ௄; V ௜ܹ௏) (19)

where ௜ܹொ, ௜ܹ௄ , ௜ܹ௏ are all trainable weights.
2) Pooling: Now we have the vectors ௜ܸ௡௧௘௥ with

interaction of sentences pairs. Similar to the pooling layer
of the comparison module, but only one sentence vector is
passed through here, we need to reduce the dimensions of ௜ܸ௡௧௘௥ . We use both global average pooling and global max
pooling, obtain the aggregation representations by
concatenating the results of two pooling layers:௔ܸ௩௚௜௡௧௘௥=∑ ௏೔೔೙೟೐ೝ௠௠௜ୀ଴ (20)

௠ܸ௔௫௜௡௧௘௥ = ௜ୀ଴௠ݔܽ݉ ௜ܸ௜௡௧௘௥ (21)௜ܸ௡௧௘௥=[௔ܸ௩௚௜௡௧௘௥; ௠ܸ௔௫௜௡௧௘௥] (22)

D. Output
We get the final representation of the comparison

module and the interaction module by concatenating the ୫ܸୣ୰୥ୣୢ and ௜ܸ௡௧௘௥:௔ܸ௟௟=Concat(୫ܸୣ୰୥ୣୢ; ௜ܸ௡௧௘௥) (23)
The way we get ௔ܸ௟௟ has both the simplicity of the

“Siamese” architecture and the explicit interaction of
sentence pairs. We calculate the label using a final
multilayer perceptron (MLP) classifier cooperating with
ReLU activations and a output layer: sigmoid.

E. Loss Function and Metrics
1) Loss Function: In this paper, we use the sigmoid

cross-entropy loss for training. The goal is to get the
network’s parameters matching the minimum cross-
entropy between the true and predicted labels:

L(ݕො, ଵே-=(ݕ ∑ ݕ] log ොݕ + (1 − (ݕ log(1 − ො)]௫ݕ (24)

where ݕො is prediction probabilities; y is the ground-truth
label. The entire networks are trained end-to-end with
backpropagation.

2) Metrics: We evaluate all contests by accuracy and
F1-score. Before calculating, we get definitions: True
Positive which can be abbrevated to TP, its value denotes
the amount of correct synonym judgments; False Positive
which can be abbrevated to FP, its value denotes the

amount of wrong synonym judgments; TN, short for True
Negative, its value means the number of correct non-
synonym judgments; FN, short for False Negative, its value
means the number of wrong non-synonym judgments.
Then we can calculate the accuracy, and F1-score as
follows
a) precision rate = TP/ (TP + FP);
b) recall rate = TP / (TP + FN);
c) accuracy = (TP + TN) / (TP + FP + TN+ FN);
d) F1-score = 2 * precision rate * recall rate / (precision

rate + recall rate).
The higher accuracy and F1-score indicate the better
performance of a model, we use both.

III. EXPERIMENTS

A. Implementation details
We use the jieba [12] for word segmentation, employ

Word2Vec [16] to train the embedding vectors of Chinese
word and character respectively and each dimension of
vector is 300. During training, we keep the embedding
layer fixed, while the out-of-vocabulary words are
initialized randomly. The SpatialDropout rate is set as 0.2.
The numbers of hidden nodes in the first GRU is set to 384,
and the numbers in the second GRU is set to 256. There are
8 heads in multi-head attention, and each dimension of
attention nodes is 16. We employ ReLU as the activation
function and Nadam [17] whose learning rate is 0.0008 as
the optimizer for back-propagation. When the F1-score had
not improved for 3 epochs, we will try to offer the learning
rate 20 percent discount. Besides, early-stopping is applied
when the F1-score had not improved for 7 epochs. The
batchsize of training stage is 256.

B. Experiments on ATEC Dataset
The dataset is derived from Ant Financial Artificial

Competition(ATEC)[7], and all of them came from the
actual application conditions of Ant Financial Brain. The
contest is about question similarity calculation, and the
contestants need to judge whether sentences pairs given by
users in customer service have same meanings. The
competition provides 100,000 pairs of annotated data as
training data, including synonym pairs and non-synonym
pairs. Each row in the dataset is a sample. The format is as
follows:

TABLE 2 THE SAMPLE OF ATEC DATASET

index sentence 1 sentence 2 label
1 1

TABLE.3 EXPERIMENTALS ON ATEC DATASETS
Model name #para Acc of

dev
F1 of dev F1 of test

Match Pyramid 8.1M 81.67 48.32 49.05
Decomposable

Attention
2.0M 69.93 40.16 37.71

BCNN 1.6M 78.80 51.30 48.38
ABCNN 2.0M 75.14 44.57 43.36

ESIM 8.4M 81.32 49.89 50.72
SNMA 4.0M 82.26 53.92 54.16

237

TABLE 4 ABLATION ON THE ATEC DEVELOPMENT DATASET
Ablation Model F1 of dev

Base model with chinese char 53.92
with chinese word instead 41.08

+chinese word 53.48
-max pool 52.45
-avg pool 48.00

-one bilstm layer 51.83
-multi-head attention 53.88

We split these 100,000 sentences pairs into training
dataset and test dataset with 9:1 ratio, and then divide the
training dataset into new training dataset and development
dataset with 8:2 ratio.

The experimental results of different models for
ATEC datasets are shown in the table 3. All models do not
use additional manual features. In addition to our own
model SNMA, the other five models in the table are
reproduced from relevant papers that have achieved great
results in English datasets in the past. Our model achieves
better results on this dataset than other models.

We can see from the ablation on the ATEC
development dataset above, the embedding of word vectors
we pre-trained is so bad that even we cannot improve the
F1-score of the model when we mix the embedding of word
and char vectors, although mixxing improves score the of
Chinese words. Global average pooling play a more
important role than global max pooling in comparison
phase in ATEC dataset. As for multi-head attention phase,
it works with light contribution due to the reason of
splitting Situation A and B we talked before.

IV. CONCLUSION

We proposed a novel model for Chinese semantic
sentence matching, the experimental results on the latest
Chinese sentence matching datasets outline the
effectiveness of our approach. Our model SNMA mainly
consists of a comparison and an interaction. The
comparison is used to extract the difference of sentences
pair and the interaction is applied to extract the interactive
features. The model is designed on the fact that Chinese
semantic sentence matching datasets with short sentences
do not fit the interaction module of complex models
completely. However, the disadvantage of “Siamese”
architecture reminds us to add the interaction. We build our
“Siamese” architecture cooperating with multi-head
attention as SNMA. Semantic sentence matching always
needs both the difference and interaction of sentences pair.

ACKNOWLEDGMENT

The work described in this paper was fully supported
by a grant from the National Key R&D Program of China
(No. 2018YFC1603303).

REFERENCES

[1] Zhiguo Wang, Haitao Mi, and Abraham Ittycheriah. Sentence
similarity learning by lexical decomposition and composition. In
COLING, 2016.

[2] Wenpeng Yin, Hinrich Schutze, Bing Xiang, and Bowen Zhou.
ABCNN: Attention-based convolutional neural network for
modeling sentence pairs. arXiv preprint arXiv:1512.05193, 2015.

[3] Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, Hui Jiang, Diana
Inkpen. Enhanced LSTM for Natural Language Inference. arXiv
preprint arXiv: 1609.06038, 2016

[4] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan,
Xueqi Cheng. Text Matching as Image Recognition. arXiv preprint
arXiv: 1602.06359v1 2016

[5] Wang, Zhiguo & Hamza, Wael & Florian, Radu. Bilateral Multi-
Perspective Matching for Natural Language Sentences. 4144-4150.
10.24963/ijcai.2017/579. 2017

[6] Parikh, Ankur & Täckström, Oscar & Das, Dipanjan & Uszkoreit,
Jakob. A Decomposable Attention Model for Natural Language
Inference. 2249-2255. 10.18653/v1/D16-1244. 2016

[7] Ant Financial. Ant Financial Artificial Competition.
[8] Meng, Yuxian & Li, Xiaoya & Sun, Xiaofei & Han, Qinghong &

Yuan, Arianna & Li, Jiwei. Is Word Segmentation Necessary for
Deep Learning of Chinese Representations? arXiv preprint arXiv:
1905.05526. 2019.

[9] Junyi S. jieba. https://github.com/fxsjy/jieba
[10] Sergey Ioffe, Christian Szegedy. Batch Normalization: Accelerating

Deep Network Training by Reducing Internal Covariate Shift,
arXiv:1502.03167 [cs.LG]. 2015

[11] Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salak-
hutdinov R. Dropout: a simple way to prevent neural networks from
overfitting. J Mach Learn Res 15(1):1929–1958. 2014

[12] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun,
Christopher Bregler. Efficient Object Localization Using
Convolutional Networks. arXiv preprint arXiv: 1411.4280. 2014

[13] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean. Efficient
Estimation of Word Representation in Vector Space. arXiv preprint
arXiv: 1301.3781. 2013

[14] Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton. Layer
Normalization. arXiv preprint arXiv: 1607.06450. 2016

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin.
Attention is all your need. arXiv preprint arXiv: 1706.03762. 2017

[16] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural net-
works. In: Proceedings of the 14th International Conference on
Artificial Intelligence and Statistics, pp 315–323. 2011

[17] Timothy Dozat. Incorporating nesterov momentum into adam. .
ICLR Workshop, (1):2013–2016.

238

