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Abstract—This paper presents a real-time scheduling strat-
egy based on deep reinforcement learning (DRL) algorithm
aiming to realize economic dispatch of microgrid energy
storage considering operational uncertainties. Making the
scheduling decision of microgrid is a non-trivial task due
to the random fluctuations of new energy power generation
systems and loads. In order to solve this problem, the double
deep Q-learning algorithm with the dueling structure is
investigated to ensure the reliability of the microgrid while
considering the real-time electricity prices. The agent is tested
on the actual data and the results show that the proposed
algorithm can get small operation cost of the microgrid in
complex situations.
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I. INTRODUCTION

Microgrids incorporated with renewable energy units

and energy storage system (ESS) devices are viewed to

play important roles in the smart grid [1]. On the basis

of balancing supply and demand, it provides a systematic

way to take full advantage of renewable energy. Unfor-

tunately, the renewable energy power generation system

has the characteristics of randomness and intermittent

while the microgrid is small in scale and the smoothing

effect of load aggregation is weak, resulting in large

load fluctuations in the microgrid. ESS is regarded as

an important unit to smooth the influence of random

fluctuations on the source and load sides in MG real-time

dispatch. As energy storage system needs to be optimised

across multiple-time steps, considering the changes in real-

time electricity prices, its economic dispatch is complex.

To ensure the economic and reliable operation of the mi-

crogrid with uncertainties, the ESS’s real-time scheduling

strategy needs to be further exploited.
For the energy management and optimization control

problems in the microgrid, there have been many related

studies. In [2], the Lyapunov algorithm was introduced

into the microgrid energy management, and real-time

scheduling of the microgrid system was realized through

rigorous mathematical reasoning. This kind of method

relies on a clear target expression, and due to the random

fluctuation of renewable energy and load, the optimization

decision-making scenario of the microgrid is difficult to

abstract into a clear mathematical expression. The study

in [3] used mixed integer linear programming to solve the

stochastic scheduling problem of microgrid consisting of

renewable energy and battery system. The authors in [4]

presented a smart energy management system (SEMS) and

optimise the operation of the microgrid through the genetic

algorithm applied to ESS. The heuristic algorithm can

obtain a local optimal solution with a certain probability,

which is helpful to solve the problem of large data scale

and complicated scene.

With the rise of artificial intelligence in recent years,

research on optimization and control of reinforcement

learning (RL) in power systems are currently being con-

ducted [5]. Reinforcement learning algorithm is a model-

free method for solving sequential decisions. The combi-

nation of deep learning (DL) with RL has led to a new

field of research, called DRL, which use DL to enable RL

to deal with larger dimensional state problems. This paper

applies Dueling DQN algorithm to the economic dispatch

of energy storage in the microgrid. The microgrid energy

storage scheduling problem is described as MDP, the state

of each unit of the microgrid is used as the state space,

and the optimal strategy is obtained through constant

interaction between the agent and the environment. Finally,

the performance of the algorithm of this paper has been

verified on the actual data.

II. MICROGRID SYSTEM MODEL

The microgrid (Fig. 1) considered in this work consists

of wind-turbine generators, a battery storage system, loads

and this paper assumes the MG runs in a grid-connected

mode and can buy electricity from the real-time electricity

market, when there is insufficient energy in the microgrid

Figure 1: Microgrid system structure.

A. ESS Model

In this paper, a dynamic model is used to represent the

ESS model, in which the energy storage battery capacity

is represented by sBt , and the battery’s operating mode

includes three states: charging, discharging, and idle. We
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denote pB−dis
t and pB−ch

t as the discharging or charging

power of the considered ESS. The power pBt and the

energy level sBt of the ESS are constrained by

smin ≤ sBt ≤ smax (1)

0 ≤ pBt ≤ pBmax (2)

sBt+1 = sBt + ηpB−dis
t Δt+ ξpB−ch

t Δt (3)

where pBmax represents the maximum charging or dis-

charging power; smax and smin are the maximum and

minimum capacity of the ESS, respectively; η and ξ are

the discharging and charging efficiency. Within the unit

time, the battery is only charged or discharged.

B. Energy Dispatch Model

In this paper, the MG system can purchase electricity

from the main grid in a real-time electricity market or

transmit energy to main grid. Under the condition of

satisfying power balance and equipment constraints, the

microgrid energy storage scheduling model studied in this

paper is to minimize the operation cost of microgrid.

The power balance of the microgrid system can be

expressed as

Δp = pWt + pBt − ploadt (4)

Here, Δp > 0 represents that the microgrid transmits

energy to main grid and Δp < 0 represents that the micro-

grid purchases electricity from the main utility grid. Let

Rt denote the real-time electricity price in the microgrid,

then the operating cost of the microgrid at time step t is

computed by

CMG
t = Δp ·Rt ·Δt (5)

C. Modeling ESS scheduling as a MDP

This paper applies a DRL technology to tackle the

sequence decision problem involving the operational plan-

ning of a battery in the microgrid. In a reinforcement

learning context, the fundamental elements for the MDP

model are defined as follows.

1) State Space St: For the MG system above, we define

its state St at time step t by:

St = [pWt , ploadt , ESOC
t , Rt, t] (6)

which consist of the power of wind power pWt at time

t, the state of the battery soc ESOC
t at t, the active

load power demand pLt at t, electricity purchase price of

microgrid Rt at time t, time step t of the day.

2) Action Space At: At each scheduling time point, the

reinforcement learning agent takes discrete actions, then

the action space is set as follows :

At = [0, 1, 2] (7)

where At = 0 represents the battery does not operate,

At = 1 represents battery discharge, and At = 2
represents battery charge.

3) Reward: In the interaction between the agent and

the environment, you will get an immediate reward. From

the perspective of energy scheduling of the microgrid, the

reward function is set to the operating cost of the microgrid

CMG
t at each scheduling moment.

III. DRL ALGORITHM FRAMEWORK

Reinforcement learning is based on the Markov decision

process (MDP), that is, the state of the system at the next

moment is only related to the state of the current moment.

The energy scheduling decision problem of microgrid

can be regarded as an MDP model. RL can support

sequential decision making under uncertainty without prior

knowledge.

A. DQN Algorithm

DQN is an algorithm that combines neural networks and

Q-learning [6], which takes states or states and actions as

input to the neural network, uses the neural network to

calculate all action values, and selects the maximum value

as the output. Under the strategy π, the agent performs the

action a at the state s, and transits to the next state s′ with

the probability P , while receiving feedback r from the

environment. We define Q(s, a) as an state-action value.

The current optimal strategy π for the agent to perform

actions is to choose an action that maximizes the objective

function r + γQ∗(s′, a′), namely:

Q∗(s, a) = Es′ [r + γmax
a′

Q∗(s′, a′)|s, a] (8)

In DQN, the deep neural network with weighted θ is

used as a function approximator to estimate the state-

action value function, namely: Q(s, a; θ)≈Q∗(s, a). Then

the Q network can be trained through the loss function

Li(θi) = Es,a[(yi −Q(s, a; θi))
2
] (9)

∇θiLi(θi) = Es,a;s′ [(r + γmax
a′

Q(s′, a′; θi− 1)

−Q(s, a; θ))∇θiQ(s, a; θi)]
(10)

In (9), yi = [r + γmaxai+1
Q(si+1, ai+1; θi−1)|s, a] is

the goal of iteration i.

B. DDQN With Dueling Network Architectures

DQN includes the step of selecting the maximum es-

timate when estimating the action value, so it may lead

to overestimation during the learning process. In order

to enhance the generalization ability of the agent, the

structure of double DQN (DDQN) is adopted for the

reinforcement learning algorithm of the microgrid. Since

the model learning is based on measured data, in order to

effectively use the data, this paper uses an improved DQN

algorithm based DDQN, that is, using the Dueling DDQN

algorithm, which allows the agent to learn the value of

state and action separately.
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1) Double Q-learning: There are two neural networks

in DDQN, one is the target network Qt and the other is

the main network Qm. The working principle of DDQN

is shown in Fig. 2.

Figure 2: The training process of DDQN

In each update, The main network obtains the action a
with the highest value in the next state, and obtains the Q
value of the action a from the target network. Then the

goal of learning in ddqn is

yi = r + γQt(st+1, argmaxQm(st+1, a; θm); θt) (11)

2) Dueling DQN: The network structure of Dueling

DQN [7] is shown below:

Figure 3: The structure of Dueling DQN

The Q value of each action in Dueling DQN is deter-

mined by the following formula

Q(s, a; θ, α, β) = V (s; θ, β) +A(s, a; θ, α) (12)

In the formula, the value function V (s; θ, β) indi-

cates the degree of the state. The advantage function

A(s, a; θ, α) indicates the degree of a certain action rela-

tive to other actions in this state. The sum of V (s; θ, β) and

A(s, a; θ, α) represents the value of the certain action de-

termined in this state. In the constructed network structure,

different actions have different bias, and the value function

is a scalar quantity, adding V (s; θ, β) and A(s, a; θ, α)
directly will result in a poor learning effect. In order to

improve this method, the average value of the advantage

function is usually used for calculation

Q(s, a; θ, α) = V (s; θ, β) + [A(s, a; θ, α)

− 1

|At|
∑

a′
A(s, a′; θ, α)] (13)

IV. CASE STUDIES

This paper uses the above microgrid structure as the

analysis object, and the user side contains an ESS unit,

wind power generation device, and load unit. For all

simulations, a day is divided into 24 time slots, the

baseline load profile is adopted from AEMO, and the wind

generation power data is obtained by scaling down the

realistic wind generation statistics, ranging from 0 to 20

kW. Part of the data is shown in Fig. 4. This paper also

considers the interaction between the microgrid and the

main grid.
It can be seen from the figure that the overall fluctu-

ation of the load curve data is not large, but the typical

fluctuation characteristics of each day can still be seen

from the curve. The wind power curve obviously has daily

differences and day-night gaps, and its fluctuation is very

obvious.

Figure 4: Wind power generation curve and load curve

about 4 weeks

In this paper’s reinforcement learning algorithm, the

initial value of the learning rate is set to 0.0001, and the

initial value of the discount factor γ is set to 0.99. The

capacity of the battery is set to 100 kW/h.
The following discusses the adaptability of the rein-

forcement learning strategy proposed above in the mi-

crogrid. In actual microgrid dispatching, we expect to

achieve the lowest operating costs. In the following we

will mainly examine the application of the strategy used in

the microgrid’s one-day operation. Using prediction data

with noises as training set and let the agent traverse all

the data in the training set and update the agent’s neural

network according to the reward. The error between the

predicted data and the actual data satisfies the Gaussian

distribution.
The change of the agent’s reward during the training

process is shown in Fig. 5. It can be seen from the curve

in the figure that for training data of one day, a stable state

can be reached.
Then test the trained model with actual data, the Fig. 6

and Fig. 7 shows the test results. Fig. 6 shows the changes

of wind power generation, load and battery soc. According

to the curve, it can be seen that the trained agent can

respond in real time according to the power change of the

microgrid. At the same time, we also considered the real-

time electricity price. The power gap between wind power
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and load demand ,the electricity price and the rewards of

every time slot are shown in Figure 7. In order to minimize

operating costs, the agent will consider store part of the

energy when the renewable energy generation is larger,

and consider releasing the stored energy to ensure the load

demand when the load is larger.

Figure 5: Single-day reward and iteration number of

energy storage scheduling strategy

Figure 6: The change of battery soc under the actual

fluctuation of wind power and load power

Figure 7: Changes in real-time electricity prices, differ-

ences between wind power generation and load demand

and the rewards of every time slot in a day

It can be seen from the above results that in the

case of the actual data, the ESS applying reinforcement

learning strategy will select charge and discharge actions

to achieve small operating cost when faces with multiple

uncertainties.

V. CONCLUSION

This paper studies the energy storage scheduling prob-

lem of microgrid with wind power generation, considering

the impact of electricity price. Specifically, the real-time

scheduling of MG is modeled as an MDP and the objective

is to find an optimal scheduling strategy to minimize the

daily operating cost of the MG. A double DQN method

with dueling network structure is developed to solve this

problem. In the proposed approach, the dueling DQN

are used to approximate the value of the state and the

advantage function of the action in the state. The ESS

selects the charging and discharging action based on the

observation of the microgrid. We analysis the method with

actual data, and the results show that the ESS applying

this strategy can choose the appropriate action under the

influence of multiple uncertain factors. In future research,

we will also consider the impact of load demand response

and consider the coordination between multiple agents.
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