
Research on the Application of Transparent Encryption in Distributed File
System HDFS

Fei Jiang, Zhenggao Pan, Qingzhao Li

School of Information Engineering Suzhou
Suzhou University

Suzhou City Anhui province, Peoples R China,234000
E-mail:feiwuhan@126.com
 68080507@qq.com

 1279494538@qq.com

Linsheng Huang*, Dongyan Zhang
National Engineering Research Center for Agro-

Ecological Big Data Analysis & Application, Anhui
University

Anhui University, Hefei, Peoples R China, 230601
E-mail: linsheng0808@163.com

zhangdy@ahu.edu.cn

Abstract—More and more companies are turning to Hadoop
to store and deal with their most valuable data, the
protection and management of data begin to face increasing
security risks. As a data protection technology closely related
to big data platform, HDFS transparent encryption
technology has certain practical value. In this paper, the
HDFS transparent encryption technology is studied, the
implementation principle of HDFS transparent encryption
technology is introduced, the security and performance of
the HDFS transparent encryption technology are analyzed,
and the encryption technologies at different levels of the big
data platform are compared. Research shows that HDFS
transparent encryption technology has the advantages of
high performance, transparent application and easy
deployment, but there are still potential security problems
in the application process.

Keywords-transparent encryption; big data security;
distributed file system

I. INTRODUCTION
With the rapid development of the Internet and the

continuous in-depth exploration of technology, a large
amount of data is being generated. Traditional solutions
cannot meet the storage and processing needs of massive
data, so Hadoop large data processing technology emerged
as the times require. Hadoop [1] is a Map at Google by
Doug Cutting, the founder of Apache's Lucene Full Text
Retrieval Project, and his team Hadoop technology,
created on the basis of components such as Reduce [2] and
GoogleFS [3], has been widely used by many Internet
companies such as Yahoo, Facebook, Baidu, Ali, Tencent,
and has become a generally accepted framework for large
data analysis and storage.

The Hadoop platform was initially developed without
security considerations, when Hadoop's use cases were all
about how to manage a large amount of public Web data
without considering data confidentiality and complex
internal rights management. As originally conceived by
Hadoop, it assumes that clusters are always in a trusted
environment composed of trusted, collaborative computers
used by trusted users. However, as more and more data,
users, and applications access large data platform clusters,
and more and more enterprises store private information
on the Hadoop cluster, Hadoop security issues become
particularly prominent. In 2009, the Yahoo team published
a paper [4] choosing Kerberos as the authentication
scheme for Hadoop platform, which provides a solid

foundation for the security management scheme of Hadoop
large data platform. In addition to Yahoo and other
companies, many network security researchers at home
and abroad are doing Hadoop security research: methods
such as a trustworthy equalization [5-7] ,mixed encryption
algorithm for Hadoop environment[8, 9], triple data
encryption algorithm [10], parallel encryption [11] and
other schemes are proposed. Hadoop also has five security
projects: Apache Sentry[12], Apache RecordService[13],
Apache Ranger[14], Apache Knox Gateway[15], and
Apache Rhino[16].Among them, Apache Sentry is an open
source Hadoop component released by Cloudera that
provides granularity, role-based authorization, and a multi-
tenant management model; RecordService is a new
Hadoop security layer designed to provide secure access to
data and analysis engines running on Hadoop, although the
Sentry security components previously provided by
Cloudera support access to the defined control rights.
RecordService supplements Sentry by controlling access to
row and column levels; Apache Ranger is an open source
Hadoop component released by Hortonworks, which
solves the current decentralized security management of
each service on the Hadoop platform , and creates a
centralized and unified management interface for all
services to provide access management, log auditing, etc.
Apache Knox Gateway is a cluster boundary security
management scheme proposed by Hortonworks. For the
operation and maintenance team, only the internal cluster
needs to be concerned, and no deployment details need to
be disclosed. For the development team, centralized access
to Hadoop-related services through the boundary network
management greatly simplifies the complexity of
development; Apache Rhino, an open source project led by
Intel, is dedicated to providing enhanced security for
Hadoop's ecological components and data.

Encryption is the most direct and effective means of
data protection and the last defense line for data protection.
The Apache Rhino project proposes HDFS transparent
encryption technology that can be used to secure Hadoop
data. Transparent encryption [17, 18] means that for users,
the encryption and decryption of data is automatic and will
not affect their normal operation habits. With this
technology, when users save data, the system will
automatically encrypt the data. When users open or edit
specified files, the system will automatically decrypt the
encrypted files. The encrypted files are stored on the hard
disk, and the clear text is stored in memory. Once they
leave the environment, the data cannot be automatically

1

2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science
(DCABES)

2473-3636/20/$31.00 ©2020 IEEE
DOI 10.1109/DCABES50732.2020.00011

decrypted, thus protecting the data. The effect of content
back to HDFS transparent encryption has led to the
concept of Encryption Zone, an encrypted area that is a
special directory on HDFS, where written content is
encrypted transparently while reading the contents in the
encrypted area space is decrypted transparently.
Encryption and decryption do not require changes to user
application code. This encryption is also end-to-end,
meaning that the data can only be encrypted and decrypted
by Client. At present, foreign data platforms such as
Cloudera and IBM started to apply this encryption
technology; however, China has not yet achieved
enterprise application in the mainstream large data
platforms, and the application of HDFS transparent
encryption technology needs to be further strengthened.

II. HOW HDFS TRANSPARENT ENCRYPTION WORKS

A. Introduction to HDFS
Distributed File System HDFS is the core component

of Hadoop Platform to implement massive data storage at
the bottom of the platform. HDFS clusters involve three
important roles: NameNode, DataNode, and Client.
NameNode is the controller of the entire cluster, which
manages the HDFS namespace, cluster information, block
replication, and so on. NameNode stores HDFS metadata
in memory, mainly including file information, block
information corresponding to the file, and DataNode where
each block is located. DataNode is the data storage node of
the cluster and periodically reports all block information to
NameNode. Client is an application that needs to obtain
distributed file system files and is responsible for reading
and writing cluster data.

File Writing: First Client sends a request for a file
writer to NameNode; then NameNode returns information
about DataNode available to Client based on the size of the
file and the block configuration; and finally Client divides
the file into blocks and writes the blocks into DataNode
sequentially based on the received DataNode information.

File reading: Client first initiates a file read request to
NameNode; NameNode then returns the information of the
DataNode stored in the file; and Client finally reads the file
information.

B. HDFS Transparent Encryption works
HDFS Transparent Encryption uses the Key

Management Server KMS to generate and manage the
following keys:

Encryption Zone Key (EZK): Each encrypted zone has
one encrypted zone key s stored on the KMS server;
NameNode does not know the encrypted zone key;

* Data Encryption Key (DEK): one data encryption
key for each file; Client uses it to decommission data on
HDFS; exposes KMS and Client, and keeps NameNode
and DataNode private;

* Encrypted Data Encryption Key (EDEK): KMS uses
EZK to encrypt DEK generated and stored on NameNode;
KMS uses EZK to decrypt EDEK to obtain DEK.

Write data flow:
The system administrator first creates a directory as the

encrypted zone EZ and an encrypted zone key EZK.
1. When Client writes a file to the encrypted area,

Client first communicates with NameNode to confirm that

the file is written; 2. After NameNode receives Client's
request, it requests the encryption data encryption key
EDEK from KMS;

3. After KMS receives the NameNode request, it
retrieves the master key, chooses a numeric value as the
DEK, encrypts the DEK via EZK, and sends the EDEK to
NameNode in cipher.

4. NameNode saves the EDEK and sends the EDEK
and available DataNode information to the Client;

5. Client sends EDEK to KMS after receiving EDEK
and requests decryption of EDEK;

6. After KMS receives the request to decrypt the
EDEK, it uses the encrypted area key EZK to decrypt the
EDEK, generates the data encryption key DEK, and
returns the DEK to Client;

7. Client uses DEK to encrypt data and stores it in an
encrypted area (Client passes file ciphertext block by block
to the corresponding DataNode in order, and DataNode,
which receives the block, copies the block to other
DataNode).

Reading data flow:
1. Client sends the file path to be read to NameNode;
2. NameNode gets the meta-information of the file

(mainly the block's stored location information, EDEK)
and returns it to Client;

3. Client requests KMS to decrypt EDEK;
4. KMS decrypts EDEK and returns DEK to Client;
5. Client finds the blocks of corresponding DataNode

files one by one based on the returned information and
performs data append and merge locally on the Client to
decrypt the encrypted data using DEK to get the entire file.

III. ANALYSIS OF HDFS TRANSPARENT ENCRYPTION
TECHNOLOGY

A. Security Analysis
HDFS transparent encryption technology involves

three entities: KMS server, HDFS cluster (NameNode and
DataNode), and Client. The security of encrypted zone
data is analyzed when they are under attack.

1. Attacking KMS Server
Attackers attack KMS servers and can obtain EZK,

EDEK, DEK. In a secure environment, the KMS/keystore
administrator and HDFS administrator roles should be
separated so that they do not have access to all encrypted
data and all encrypted keys at the same time. An attacker
cannot obtain HDFS ciphertext because he does not have
HDFS access, which prevents the attacker from decrypting
the ciphertext. Secondly, an attacker attacking the KMS
server will destroy or delete the key, and Client will not be
able to access the encrypted zone data properly.

2. Attacking HDFS clusters
The NameNode of the HDFS cluster has an EDEK and

the DataNode node has text data. Although EDEK and
cryptographic data can be obtained by attacking HDFS
clusters, it is not possible to decrypt cryptographic data
because DEK cannot be recovered without EZK.

3. Attack Client
An attacker can impersonate a user to obtain a

password file allowed by HDFS access rights and an
EDEK allowed by KMSACL access rules. An attacker can
then obtain a DEK by interacting with KMS to recover the

2

ciphertext data that intersects the two. In security settings,
this access to HDFS and KMS keys should be strictly
controlled.

4. Network eavesdropping
1) Network eavesdropping between Client and KMS
Attackers can obtain EDEK, DEK by eavesdropping on

the network between Client and KMS. If an attacker can
decrypt part of the ciphertext in the encrypted area by
obtaining the ciphertext data, there is a risk of network
eavesdropping. It is recommended to configure TLS/SSL
to enhance the security of network transmission.

2) Network eavesdropping between KMS and HDFS
Attackers eavesdropping on the network between KMS

and HDFS can only obtain EDEK because there is no EZK
and ciphertext data to recover encrypted zone data.

3) Network eavesdropping between Client and HDFS
Attackers eavesdropping on the network between

Client and HDFS can only obtain encrypted data and
EDEK, because DEK cannot be obtained without EZK,
thus decrypting encrypted data.

In summary, HDFS transparent encryption has the
following security features and risks.

HDFS transparent encryption has the following
security features:

A) Both encryption and decryption are in Client, which
meets two typical encryption requirements: static
encryption (data stored in HDFS encrypted area is
encrypted data) and transmission encryption (data is
transmitted from Client to minefield in encrypted text),
which protects data when an attacker steals a hard disk or
intercepts a network.

B) Attacking HDFS clusters does not leak encrypted
zone data.

C) The potential harm to a malicious user is limited.
Malicious users can only access password files that they
have HDFS access to, and can only decrypt EDEKs that
are allowed by KMS ACL access rules. Its ability to access
plaintext is limited to the intersection of the two.

There are several security risks to HDFS transparent
encryption:

A) Risk of KMS being attacked: Client will read
encrypted zone data normally by meta-method once key
loss or corruption means data disaster. KMS key storage
must be an authoritative storage key at the enterprise level
to ensure that the key is not lost. KMS/keystore
administrator and HDFS administrator roles should also be
separated to avoid data disclosure due to KMS attacks.

B) Network sniffing risk: There is a risk of network
eavesdropping when keys are transmitted in clear text
between Client and KMS via http. The security of network
transmission should be enhanced by configuring TLS/SSL.

C) The risk of impersonating a user: an attacker can
impersonate a user to decrypt some files in the encrypted
zone. HDFS and KMS users should be configured with
authentication and permission rules in a safe production
environment, while KMS ACL rules should be used to
control user access to and operation of keys. minimum
permissions for users can be set to ensure that a legitimate
user can only get DEK of his own encrypted zone file in
KMS, while other users without relevant permissions can
be blocked.

B. Performance Analysis
HDFS transparent encryption uses symmetric

encryption algorithm-AES, an advanced encryption
standard algorithm, to encrypt data in CTR mode. By
default, 128-bit length key encryption is used. HDFS
transparent encryption is supported in Hadoop version
2.6.5 and above. This paper chooses to test the
performance of HDFS transparency technology on the
open source Apache Hadoop-2.7.1 platform: 1 NameNode
and 3 DataNodes in a cluster; each computer with 2 CPUs
and 64GB memory are adopted; 10 files are tested with
100GB file size; TestDFSIO tool tests showed that when
HDFS transparent encryption was not applied, the rate of
reading files was 153.123 MB/sec and writing files was
33.206 MB/sec; when HDFS transparent encryption was
used, the rate of reading files was 142.726 MB/sec, which
decreased by approximately 6.8%, The rate of writing files
is 32.657MB/sec, which decreases by about 1.7%. It can
be seen that HDFS transparent encryption technology has
good performance.

C. Comparison of encryption at different levels
The Hadoop Big Data Platform implements several

different forms of encryption, which can be divided from
top to bottom into application layer encryption, database
layer encryption, HDFS transparent encryption, file system
layer encryption and disk encryption. The following chart
compares different layers of encryption for the platform.
You can see that encryption at the upper level is more
flexible and meets the fine-grained security needs of users;
encryption at the lower level is easier to deploy and
operate. The lowest level of encryption encrypts all node
data, effectively protecting the data, but lacks finer-grained
encryption. HDFS transparent encryption is between the
database house and the file system, and can achieve finer-
grained encryption than file system.

TABLE I. COMPARISON OF DIFFERENT LEVELS OF ENCRYPTION ON
HADOOP PLATFORM

Encryption
Level

Advantages Disadvantages

Application
Layer
Encryption

The safest and most flexible
way to accurately respond to
user security needs.

Difficult and requires
changes in user appli-
cation code

Database
Layer
Encryption

Many database vendors
provide some form of
encryption

Performance issues,
indexes cannot be
encrypted

HDFS
Transparent
Encryption

Provides high performance,
transparent application,
easy deployment,
more flexible than file
system encryption.

Number of keys
makes key manag-
ement difficult

File System
Layer
Encryption
(FSL)

easy to deploy,
high performance

the unflexible requir-
ements of application
security,
database column enc-
ryption,
end user data encr-
yption for multi-
tenant applications.

Disk
encryption

easy to deploy,
high performance

inflexible and prev-
ents only physical
data theft.

3

IV. CONCLUDING REMARKS

Data has become a national basic strategy of
plundering and social basic production elements. Large
data platforms carry a large amount of data, and effective
measures need to be taken to resist the security risks of
large data platforms. Research shows that HDFS
transparent encryption technology has high performance,
transparent application, easy deployment, and is more
flexible than file system encryption. It is an effective
technology to protect data security of large data platforms.
However, in the application process, great importance
should be attached to the security risks of KMS attack,
network sniffing, and impersonating users.. By default,
Hadoop uses file-based Java KeyStore for key storage,
which does not meet the security needs of large enterprises
(Client will not be able to properly read encrypted zone
data once the key is lost or corrupted), which require a
more robust and secure key management solution.
Cloudera has developed Cloudera Navigator Key Trustee
Server to provide platform key storage and management.
However, due to the lack of dedicated key management
products, the enterprise application of HDFS transparent
encryption technology has not been achieved in the
mainstream large data platforms in China. The application
of HDFS transparent encryption technology needs to be
further strengthened.

ACKNOWLEDGMENT
This work was supported in part by The Open

Research Fund of National Engineering Research Center
for Agro-Ecological Big Data Analysis & Application,
Anhui University (No. AE2019011, No. AE2018010), the
Key Natural Science Project of Anhui Provincial
Education Department under Grant (No. KJ2019A0668),
Supported by the Open Research Fund of AnHui Key
Laboratory of Detection Technology and Energy Saving
Devices, AnHui Polytechnic University (No.
DTESD2020B05) and The Key Research and Technology
Development Projects of Anhui Province (No.
202004a06020045)

REFERENCES
[1] Apache. Hadoop. [EB/OL]. http://hadoop.apache.org/.

[2] Ghemawat S Gobioff H. and Leung S. T. The google file
system[C]//Proceeding of the 19th ACM symposium on Operating
systems principles, New York, USA,2003: 29-43.

[3] Dean J. and Ghemawat S. Map Reduce: simplified data processing
on large clusters[J]. Communications of the ACM,2008,51(1): 107-
113.

[4] Malley O, Zhang K, Radia S, et al. Hadoop security design.
Sunnyvale, CA, USA: Yahoo Inc. , 2009.

[5] Khalil I, Dou Zuochao, Khreish A. TPA-based authentication
mechanism of Apache Hadoop[C]//Proc of Int Conf on Security
and Privacy in Commu-nication Networks. Berlin: Springer, 2015,
152: 105-122.

[6] Leicher A,Kuntze N ,Schmidt A. Implementation of a trusted ticket
system [C]//Emerging Chanllege for Securiy,Privacy and Trust.
Berlin:Springer, 2009, 152-163.

[7] Ruan A,Martin A. Towards a trusted map reduce
infrastructure[C]//Proc of the 8th IEEE World Congrss on
Services(SERVICES). Piscataway,NJ: IEEE,2012: 141-148.

[8] Shehzad, Danish &. Khan, Zakir &. Dag, Hasan &. Bozkus, Zeki.
(2016). A Novel Hybrid Encryption Scheme to Ensure Hadoop
Based Cloud Data Security[J]. International Journal of Computer
Science and In-formation Security 194 7-5500. 14. 480-484.

[9] H. Lin, S. Shen, W. Tzeng and B. P. Lin, Toward Data
Confidentiality via Integrating Hybrid Encryption Schemes and
Hadoop Distributed File System [C]// 2012 IEEE 26th
International Conference on Advanced In-formation Networking
and Applications, Fukuoka, 2012, pp. 740-747. doi: 10. 1109/
AINA. 2012. 28.

[10] Chao Yang, Lin Weiwei, Mingqi Liu. A Novel Triple Encryption
Scheme for Hadoop-Based Cloud Data Security [C]// Emerging
Intelligent Data and Web Technologies (EIDWT) 2013 Fourth
International Conference on, pp. 437-442, 2013.

[11] Wang Feng Kohler M, Schaad A. Initial encryption of large
searhable data sets using Hadoop [C]//Proc of 20th ACM Symp on
Access Control Models and technologies,New Work:ACM,2015:
165-168.

[12] Cloudera. Sentry. [EB/OL]. https://www.cloudera.com/products/
open-source/apache-hadoop/ apache-sentry. html

[13] Cloudera.
Recordservice.[EB/OL].(2015).http://blog.cloudera.com/blog/2015
/09recordservice-for-fine-grained-security-enforcement-across-the-
hadoop ecosystem/.

[14] Hortonworks.Ranger. [EB/OL].(2016).https://hortonworks.
com/a-pache/ranger I.

[15] Hortonworks. KnoxGateway.[EB/OL].(2016).https://horton-works.
com/apache/ knox-gateway/.

[16] Intel.Project Rhino.[EB/OL].(2015).http://github.com/intel-
ha-doop/projecthino/

[17] ZHOU Daoming, QIAN Lufeng, WANG Lulu. Transparent
encryption technology research [J]. Netlnfo Security, 2011, 12
(14): 54-56. (in Chinese)

[18] WANG Quanmin, ZHOU Qing, LIU Yuming, ZHU Erfu. Research
on file system transparent encryption techniques [J]. Computer
Technology and Development, 2010, 3(20): 147-150. (in Chinese)

4

