
Resource Allocation and Task Scheduling Scheme in Priority-Based

Hierarchical Edge Computing System

1st LIAO Jing Xian , 2nd WU Xue Wen
College of Computer and Information, HoHai University, Nanjing 211100, China

liaojingxian@hhu.edu.cn

Abstract—By offloading intensive computing tasks to the edge
cloud, mobile edge computing can meet the end-to-end delay
requirements of milliseconds. A hierarchical edge computing
offloading framework based on emergency priority is
proposed in this paper. A resource allocation and task
scheduling optimization scheme based on service emergency
priority is proposed to minimize the total delay of the system
and ensure the minimum delay experienced by high priority
services. Then, in order to ensure that the delay of high
priority tasks is still minimum under very dense conditions, a
dynamic priority task scheduling algorithm (DPTSA) is
designed on the fog server. Simulation results show that the
proposed system framework and algorithm can reduce the
average delay of system tasks, and significantly reduce the
delay of high priority tasks.

Keywords—Mobile edge computing, Priority, Delay, Resource
allocation, Task scheduling, Optimization

I. INTRODUCTION

With the development of 5G communication and IoT,
a large number of mobile devices and their services have
led to the explosive growth of mobile data traffic, more and
more mobile applications put forward strict requirements
for real-time communication and intensive computing [1].
In the traditional IoT network, the data of the terminal
devices is usually transmitted to the cloud server for
processing. However, the massive amount of IoT device
data brings a heavy burden to the cloud server and wireless
link, and the system performance will be affected and
degraded sharply. [2]. By implementing an MEC server on
a cellular base station, it pushes the processing of
computing tasks to the edge of the network close to local
users, which can provide higher quality of service (QoS) for
IoT applications and meet the key end-to-end delay
requirements of 5G networks.

The applications with the highest latency requirements
in IoT are certain scenarios that are closely related to human
safety and health. These scenarios not only need to transmit
warning information timely, but also need to return detailed
and accurate reports to help users analyze specific
situations and make accurate judgments. For the two results
returned by the same batch of application data processing,
users have two different requirements. The former requires
extremely low latency but small computations called a
simple task, while the latter requires large computations but
delays, it can be tolerated and is called a complex task.

We propose a hierarchical edge computing offloading
framework. The first layer are edge nodes that are closer to

the user equipment with fewer computing resources, and
the second layer is a fog server which is farther from the
user and has more computing resources. The edge nodes
handle simple tasks with a small amount of computation in
order to quickly return warning messages. After processing
by the edge node, the tasks are divided into three priority
levels according to the degree of urgency, and the executing
time of the tasks generated by the user equipment with the
highest priority will be significantly reduced.

In recent years, research on edge computing has
mainly focused on offloading decision-making and
resource management [3-4]. Mobile users can achieve
different goals by choosing their own computing offloading
strategy [5-6]. In the MEC system with a large number of
offloading users, effective resource allocation becomes the
key to efficient computing offloading [7]. Tran [8] et al.
decomposes the original MINLP problem into a resource
allocation problem with fixed task offloading decisions and
a task offload problem. Ren et al. [9] studied three models
of local compression, edge cloud compression and partial
compression offloading. Due to limited and shared
resources leading to non-cooperative competition among
users [10], many works have adopted game-theoretic
solutions [11-12]. Gu et al. [13] used the matching student
project allocation game method to provide a distributed
solution to the joint resource allocation problem
formulated. Most of the above related work studied
resource allocation or task scheduling separately, and does
not consider the priority of users.

In section II, we propose a priority-based hierarchical
edge computing offloading framework. In section III, we
study the allocation of wireless resources and computing
resources. In Section IV, we design the dynamic priority
task scheduling DPTSA algorithm. In section V, the
simulation results are shown. Section VI concludes it all.

II. SYSTEM MODEL

A. Hierarchical Edge Computing System

Fig.1 shows the hierarchical edge computing system,
which contains a fog server, a set of edge nodes

.Each edge node is responsible for a group {1,2,..., }N=N
of local equipment denoted by .The edge node can serve k i
a group of terminal devices ,The task genated from the iM
device of the edge node is denoted as .k i ,i kτ

The initial requirements of the task are expressed ki,τ
as tuple ,where represents the number of , , ,{ , , }i k i k i kC D DL ,i kC
CPU cycles required for simple computation of the task,

46

2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science
(DCABES)

2473-3636/20/$31.00 ©2020 IEEE
DOI 10.1109/DCABES50732.2020.00021

Base Station Fog Server

User Device Edge Node

1M

2M

NM

Edge 2

1

2...

Edge N

1

2...

...

Data Flow direction

Edge 1

1

2...

Fig.1 Hierarchical Edge Computing System Architecture

represents the data size of the task, and represents ,i kD ,i kTD
the deadline for completion of the task. After the task is
simply processed on the edge node, the requirements tuple
becomes . is the number of CPU ' '

, , , ,{ , , , , }i k i k i k i kC D DL p α '
,i kC

cycles required for the task to perform accurate
computations on the fog server, is the amount of data '

,i kD
remaining after simply processing, represents three p
priority levels distinguished according to the degree of
urgency, namely , and . is the proportion 1p = 2p = 3p = ,i kα
of radio resources allocated to the task for the base station.

B. Communication Model

The base station orthogonally allocates spectrum
resources to the tasks of all user equipment in the system,
and the total spectrum bandwidth is .The uplink B
transmission rate of the task is denoted as,i kR ,i kτ

,where is the transmit
2

, ,
, , , 2 2

| |
[(1)] log (1)

r
i B i i B

i k i k i k

h Pd
R p Bα

σ

−

= − + iP

power of the edge node, represents the uplink channel ,i Bh

fading coefficient, is the distance between the base ,i Bd

station and the edge node , is the path loss index, and i r
is the noise power. indicates the proportion of uplink 2σ ,i kα

spectrum resources allocated to edge nodes, and, [0,1]i kα ∈

, is the priority weight. The remaining ,
1 1

1
iMN

i k
i k

α
= =

≤∑∑ ,i kp

amount of data of task processed by the edge node is ,i kτ

denoted as , , is the proportion of data '
,i kD '

, , ,i k i k i kD x D= ⋅ ,i kx

after processing. The communication delay of the task is

.
'
,

,
,

i ktran
i k

i k

D
t

R
=

C. Computation Model

 Computing resources of all edge nodes connected to
each fog server are equal, denoted as .The computing nf

capacity allocated by the edge node to the task on the device
is recorded as .The sum of computing capacity k edge

kf

allocated to all devices by each edge node should not
exceed the maximum computing resources of the edge
node, namely, .Denote as the maximum

1
iM edge

k nk
f f

=
≤∑ sf

computing capacity of the fog server, indicates the ,
fog

i kf

computing capacity assigned by the fog server to the task
from the device on the edge node .The sum of computing k i

capacity allocated to all tasks should be less than the

computing power of the fog server, namely, .,
1 1

iMN
fog

i k s
i k

f f
= =

≤∑∑
The task performs more complex computations on the

fog server, so the amount of computation is larger, and the
number of CPU cycles required is more, denoted as

, fog computation delay is .Then the '
, , ,i k i k i kC y C= ⋅

'
,

,
,

i kfc
i k fog

i k

C
t

f
=

computation delay is expressed as the sum of edge
computation and fog computation delay, namely,

.
'

, ,
,

,

i k i kcomp
i k edge fog

k i k

C C
t

f f
= +

III. RESOURCE ALLOCATION OPTIMIZATION

In the section, we will formulate the delay
minimization resource allocation optimization problem, which is formulated as follows

 (1)
, ,

' '
, , ,

{ , , } 1 1 ,

min ()
i

edge fog
i k k i k

MN
i k i k i k

edge fogf f i k i k k i

D C C
R f fα = =

+ +∑∑

, ,
1 1

. . 1: 1, 0, ,
iMN

i k i k
i k

s t C k iα α
= =

≤ ≥ ∈ ∈∑∑ iM N

1
2 : , 0,

iM
edge edge

k n k
k

C f f f k
=

≤ ≥ ∈∑ iM

, ,
1 1

3 : , 0, ,
iMN

fog fog
i k s i k

i k

C f f f k i
= =

≤ ≥ ∈ ∈∑∑ iM N

where C1 is the optimization constraint of the wireless
resource allocation ratio, which guarantees that the sum of
the wireless resources allocated to all devices will not
exceed the maximum bandwidth of the system, and ensures
that the wireless resource allocation ratio is non-
negative.C2 and C3 are the optimization constraints for
edge computing and fog computing, respectively. They
ensure that the sum of computing resources allocated to all
devices will not exceed the maximum computing capacity.

In this paper, there is no direct connection between
wireless resource and computing resource allocation, so the
joint resource allocation optimization problem is divided
into two sub-problems, namely, radio resource allocation
(RRA) and computing resource allocation (CRA).

The RRA problem is a convex optimization problem.
In order to solve this convex problem, we let

, a Lagrange function is defined as,
2

, ,
, 2 2

| |
log (1)

r
i B i i B

i k

h Pd
r B

σ

−

= ⋅ +

 (2)
'
,

, ,
1 1 1 1, , ,

(,) (1)
(1)

i iM MN N
i k

i k i k
i k i ki k i k i k

D
L

p r
α λ λ α

α= = = =

= + −
−∑∑ ∑∑

Using the KKT condition, the optimal solution for the
wireless resource allocation ratio is

 (3)

'
,

, ,*
, '

,

1 1 , ,

(1)
, ,

(1)

i

i k

i k i k
i k

MN
i k

i k i k i k

D
p r

k i
D
p r

α

= =

−
= ∈ ∈

−∑∑
iM N

Similarly, we define a Lagrange function for CRA
problem, which is expressed as

47

 (4)

'
, ,

,
1 1 ,

,
1 1 1

(, , ,) ()

() ()

i

i i

M N
i k i k

k i k
k ik i k

M MN

k n i k s
k i k

C C
L f f

f f

f f f f

λ μ

λ μ

= =

= = =

= +

+ − + −

∑ ∑

∑ ∑∑

Using the KKT condition, the optimal solution for the
computation resource allocation on edge nodes is

(5),*

,1

,
i

n i k
k M

i kk

f C
f k

C
=

= ∈
∑ iM

and the optimal solution for the computation resource
allocation on fog server is

 (6)
'
,*

,
'
,

1 1

, ,
i

s i k
i k MN

i k
i k

f C
f k i

C
= =

= ∈ ∈

∑∑
iM N

IV. DYNAMIC PRIORITY TASK SCHEDULING ALGORITHM

We propose a task scheduling algorithm based on
dynamic priority (DPTSA). The algorithm considers both
the urgency of the task and the deadline of the task to ensure
that the tasks with higher priority run first, which improves
the scheduling performance.

The DPTSA algorithm is shown in Algorithm
1.Firstly, we set up three buffers, namely high priority
class1, medium priority class2 and low priority class3, and
the task enters the buffer of the corresponding priority; then
execute tasks in class1, class2 and class3 sequentially, and
each buffer is scheduled separately; The emergency degree
indicator is set for the algorithm, which combines the
waiting time of the task and the task execution time. As the
waiting time increases, the urgency of all tasks changes
dynamically. Denote the urgency as , the waiting time of e
the task as , and the remaining execution time of the task x
as, and the urgency of the task is expressed as:

 (7)
1

2

1 0

1 0

w | x | ,x
y

e
,x

w x y

⋅ +⎧ <⎪⎪= ⎨
⎪ ≥
⎪ +⎩

Algorithm 1: DPTSA
1.Initialize: create 3 buffers called class1, class2 and class3
respectively
2.if a new task arrives:
3. if p == 1:
4. place task in class1;
5. if p == 2:
6. place task in class2;
7. else:
8. place task in class3;
9. if class1 is not empty:
10. while True:
11. update x, y of every task;
12. calculating e of all the tasks in the buffer;
13. pick the task with highest e in the buffer;
14. calculate time piece with age;
15. execute the task in one time piece;
16. if task is not completed:
17. update y, age;

18. place the task back in the buffer;
19. if a task is executed completely:
20. remove the task from the buffer
21. if the buffer is empty:
22. break;
23.if class2 is not empty:
24. executing the same scheduling process as class1;
25.if class3 is not empty:
26. executing the same scheduling process as class1;

V. SIMULATION RESULTS

The default settings of some simulation parameters are
as follows: The system is configured with 1 fog server and
10 edge nodes. The number of user equipment managed by
each edge node is 10~20. For wireless access, the spectrum
bandwidth of uplink and downlink are equal, we set the
bandwidth B = 200 MHz. The Edge node transmission
power = 27 dBm, The channel fading coefficient of MDs iP
follow the exponential distribution with mean 1. The path
loss factor r = 4. The computing capacity of edge nodes is
60000 Mega cycles and the computing capacity of fog
server is 120000 Mega cycles. The computational load of
the task follows a Gaussian distribution , , 2

1(,)CN μ σ 500μ =
Mega cycles .2

1 100σ =

A. Comparison of different resource allocation strategies

We compared the average delay of system tasks under
different resource allocation strategies, which are the
following four strategies: (1)Joint wireless and computing
resource allocation optimization strategy; (2) Only
computing resource allocation is optimized, and wireless
resources are evenly allocated; (3) Only wireless resource
allocation is optimized, and computing resources are evenly
allocated; (4) No resource allocation optimization, Evenly
allocate wireless and computing resources.

1 2 3 4 5 6 7 8 9 10
Number of Edge Nodes N

150

200

250

300

350

400

Ta
sk

 A
ve

ra
ge

 D
el

ay
(m

s)

Both Resource Allocation Optimization
Computing Resource Allocation Optimization
Radio Resource Allocation Optimization
None Resource Allocation Optimization

 2 4 6 8 10 12 14 16 18
Number of User Devices per Edge Node

50

100

150

200

250

300

350

400

450

500

Ta
sk

 A
ve

ra
ge

 D
el

ay
(m

s)

Both Resource Allocation Optimization
Computing Resource Allocation Optimization
Radio Resource Allocation Optimization
None Resource Allocation Optimization

Fig.2 Task average delay of Four Resource Allocation Strategy

Fig.2 reflects the relationship between system delay
and the total number of tasks. As the number of user
equipment increases, the delays of all strategies are
increasing due to limited resources. The joint wireless and
computing resource allocation optimization strategy
proposed has the smallest delay, and the non-resource
allocation optimization strategy has the largest delay. The
delay of only the computation delay allocation optimization
strategy is smaller than that of only the wireless resource
allocation optimization strategy. This is because in this
system, the transmission delay caused by wireless
communication is inherently smaller than the computation
delay, so the optimization effect on the allocation of
computing resources is more obvious.

48

B. Performance of DPTSA

In order to verify the performance of the DPTSA, we
compare it with the first-in first-out (FIFO) algorithm and
the pure priority scheduling algorithm (Priority). In order to
evaluate the performance of the algorithm fairly, a Delay
Degradation indicator is set, which is composed of two
parts: the overall task timeout index and the average delay.
The sum of the overtime indices of all tasks in the system
plus the average task delay is the delay deterioration index.

2 4 6 8 10 12 14 16 18 20
Task Generation Rate(per/s)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

D
el

ay
 D

eg
ra

da
tio

n
In

de
x

DPTSA
FIFO
Priority

Fig.3 Delay Degradation with task generation rate

As the task generation rate gradually increases, the
task timeout index and average task delay of the DPTSA
algorithm are the lowest. The delay deterioration index of
the Priority algorithm is lower than that of the FIFO
algorithm because although the average delay of the two
tasks is similar, the high priority task timeout index of the
Priority algorithm is lower than that of the FIFO algorithm.
The delay deterioration index of the DPTSA algorithm is
lower than that of the Priority algorithm because although
both have different priorities, in their respective priority
buffers, the Priority algorithm is still first in, first out, and
the DPTSA algorithm is based on the urgency of the task.
To execute, the average task delay is lower than Priority
algorithm. In the case of high task density, the performance
of the DPTSA algorithm is better than other algorithms.

C. Performance comparison of three priority tasks

1 2 3 4 5 6 7 8 9 10
Number of Edge Nodes N

100

150

200

250

300

350

400

450

Ta
sk

 A
ve

ra
ge

 D
el

ay
(m

s)

High Priority Tasks
Middle Priority Tasks
Low Priority Tasks
All Tasks

2 4 6 8 10 12 14 16 18 20
Task Generation Rate(per/s)

500

1000

1500

2000

2500

3000

3500

Ta
sk

 A
ve

ra
ge

 D
el

ay
(m

s)

High Priority Tasks
Middle Priority Tasks
Low Priority Tasks
All Tasks

Fig.4 Task average delay of different priorities

Since we set up priority-based wireless resource
allocation, the average delay of high-priority tasks is the
lowest. The low latency of high-priority tasks is at the
expense of the performance of low-priority tasks, because
low-priority tasks are always greater than the overall task
average delay. With the increasement of task generation
rate, the number of queues in the system buffer increases,
and the delay gap between the three priority tasks is getting
bigger and bigger. This is because the DPTSA algorithm
proposed in this paper plays a vital role.

VI. CONCLUSION

In this paper, a priority-based hierarchical edge
computing offloading system framework is proposed for
user scenarios where the situation is more urgent, and the
resource allocation and task scheduling schemes based on
the system are studied. In order to minimize the system
delay, firstly, the allocation of wireless resources and
computing resources is constructed and then their optimal
solutions are obtained by using KKT conditions. We design
the DPTSA algorithm, and gives the task scheduling
algorithm and execution process of the entire system.
Finally, the simulation results show that the resource
allocation scheme in this paper can effectively reduce the
task delay. The delay of high-priority tasks is lower than
that of other priority tasks, and the DPTSA algorithm also
has better performance than other scheduling algorithms.

REFERENCES
[1] Tao, Xiaoyi, et al. "Performance guaranteed computation offloading

for mobile-edge cloud computing." IEEE Wireless
Communications Letters 6.6 (2017): 774-777.

[2] Zhang, Guowei, et al. "Delay minimized task scheduling in fog-
enabled IoT networks." 2018 10th International Conference on
Wireless Communications and Signal Processing (WCSP). IEEE,
2018.

[3] Mao, Yuyi, et al. "A survey on mobile edge computing: The
communication perspective." IEEE Communications Surveys &
Tutorials 19.4 (2017): 2322-2358.

[4] Mach, Pavel, and Zdenek Becvar. "Mobile edge computing: A
survey on architecture and computation offloading." IEEE
Communications Surveys & Tutorials 19.3 (2017): 1628-1656.

[5] Zhang, Huaqing, et al. "A hierarchical game framework for resource
management in fog computing." IEEE Communications Magazine
55.8 (2017): 52-57.

[6] Tang, Ling, and Shibo He. "Multi-user computation offloading in
mobile edge computing: A behavioral perspective." IEEE Network
32.1 (2018): 48-53.

[7] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-user computation
partitioning for latency sensitive mobile cloud applications,” IEEE
Trans. Comput., vol. 64, no. 8, pp. 2253–2266, Aug. 2015.

[8] Tran, Tuyen X., and Dario Pompili. "Joint task offloading and
resource allocation for multi-server mobile-edge computing
networks." IEEE Transactions on Vehicular Technology 68.1
(2018): 856-868.

[9] Ren, Jinke, et al. "Latency optimization for resource allocation in
mobile-edge computation offloading." IEEE Transactions on
Wireless Communications 17.8 (2018): 5506-5519.

[10] Li, Keqin. "A game theoretic approach to computation offloading
strategy optimization for non-cooperative users in mobile edge
computing." IEEE Transactions on Sustainable Computing (2018).

[11] Zheng, Jianchao, et al. "Dynamic computation offloading for
mobile cloud computing: A stochastic game-theoretic approach."

[12] Chen, Xu. "Decentralized computation offloading game for mobile
cloud computing." IEEE Transactions on Parallel and Distributed
Systems 26.4 (2014): 974-983.

[13] Gu, Yunan, et al. "Joint radio and computational resource allocation
in IoT fog computing." IEEE Transactions on Vehicular
Technology 67.8 (2018): 7475-7484

49

