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Abstract— In this article, based on the sliding-mode  
controller, the finite-time combination synchronization of 
three memristive FitzHugh-Nagumo(FHN) systems is 
carried out. This controller drives the system to achieve 
combination synchronization faster. The synchronization 
characteristics are investigated by the error curve of the 
combination systems, the curve of the sliding mode 
switching surface, and relationship curves of system 
variables, respectively. Numerical results are certified the 
correctness of the controller. 
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I.  INTRODUCTION 
In 1990, since the original work[1], chaotic 

synchronization has attracted extensive attention from 
scholars due to the good application of memristive 
chaotic system synchronization in information 
processing, secure communication and image encryption 
[2-4]. Several control strategies to achieve 
synchronization are investigated, such as adaptive 
control[5], feedback control[6], sliding mode control[7]. 
Many studies related to the memristive chaotic system 
have been conducted [8-12]. Based on the combined 
synchronization and projective synchronization models, 
the combined- combined synchronization of multiple 
different memristive systems is realized through sliding 
mode control. [10]. A non-autonomous chaotic FHN 
neuron system based on memristance was constructed, 
and the synchronization conditions of two unidirectional 
and bidirectional memristive FitzHugh-Nagumo neuron 
circuits were studied[11]. A five-dimensional 
hyperchaotic four-wing system based on memristor was 
built and its synchronization was realized[12]. However, 
the above-mentioned research only reports on a 
master-slave system, and further study on the 
synchronization of two or more memristive systems is 
needed. In addition, in practice, it is hoped that the 
system can be synchronized quickly. Therefore, it is 
meaningful to study the finite-time combination 
projective synchronization of multiple memristive 
systems. 

Based on the method of sliding mode control, a new 
sliding-mode controller is designed to realize the 
projective synchronization of three memristive FHN 
systems with unknown interference. The controller is 
simple in structure and can make systems quickly realize 
combination projective synchronization.   

II. DESIGN OF SLIDING MODE CONTROLLER  
The two driving systems and the response system 

are written as follows: 
1 1 1( ) ( )x Ax f x D t= + +                (1) 

             2 2 2( ) ( )y A y f y D t= + +             (2) 
 

and 
3 3 3( ) ( ) ( )z A z f z D t u t= + + +            (3) 

where 1 2[ , ... ]T
nx x x x= , 1 2[ , ... ]T

ny y y y= and 1 2[ , ... ]T
nz z z z=

are the state vectors of systems (1)-(3),respectively. 
1 11 12 1 2 21 22 2 3 31 32 3[ , ... ] , [ , ... ] , [ , ... ]T T T

n n nA A A A A A A A A A A A= = =

are coefficient matrix, ( )1 11 12 1[ ( ), ( )... ( )] ,T
nf x f x f x f x=

2 21 22 2 3 31 32 3( ) [ ( ), ( )... ( )] , ( ) [ ( ), ( )... ( )T
n nf y f y f y f y f z f z f z f z= =

]T are continuous functions, 1 11 12 1 2( ) [ , ... ] , ( )T
nD t d d d D t=  

11 12 1 3 31 32 3[ , ... ] , ( ) [ , ... ]T T
n nd d d D t d d d= =  are the external 

disturbances, 1 2( ) [ ( ), ( )... ( )]T
nu t u t u t u t=  is the vector of 

synchronous controllers. If there are three constant 
matrices , , n nB C J R ×∈ and 0J ≠ , a constant (T T= , 

(0)) 0e > such that 0
t T
Lim Bx Cy Jz

→
+ − = ,if t T≥ ,the 

combination of the driving system (1) and (2) and the 
response system (3) realize the combination projective 
synchronization in a limited time. 

Assume , =B I C I= and 1 2( , ... )nJ diag J J J= .The 
synchronization error of the systems can be rewritten as: 

( ) 0
t T
Lim e t x y Jz

→
= + − =            (4) 

From (1)-(3), the resulting error dynamics is 
described as follows: 

[ ]
1 1 1 2 2 2

3 3 3

1 2 1 2 3 1 2 1

2 3 1 2 3

  ( ) ( ) ( ) ( )
      ( ) ( ) ( )
  = ( ) ( )
     ( ) ( ) ( ) ( ) ( ) ( )

e x y Jz
A x f x D t A y f y D t

J A z f z D t u t

Ae A e A J A J JA z A y A x f x
f y Jf z D t D t JD t Ju t

= + −
= + + + + + −

+ + +
+ + + − − − + +

− + + − −

  (5) 

Assumption 1. The external interferences are bounded, 
that is, 

1 2 3( ) , ( ) , ( )D t D t JD tα β γ≤ ≤ ≤        (6) 
where , ,α β γ are known constants. 
Lemma 1. If there is a differential positive definite 
function ( )V t such that 

( )0 0( ) ( ), , 0V t kV t t t V tθ≤ − ∀ ≥ ≥        (7) 
where 0,0 1k θ> < < are constants. Then function ( )V t  
satisfies 

1 1
0 0 0 1( ) ( ) (1 )( ),V t V t k t t t t tθ θ θ− −≤ − − − ≤ ≤    (8) 

and 
1( ) 0,V t t t≡ ∀ ≥                (9) 

with the settling time 1t  satisfying 
1

0
1 0

( )
(1 )

V t
t t

k

θ

θ

−

≤ +
−

              (10) 

Lemma 2(see [13]). Suppose 1 2, ... nτ τ τ and 0 1μ< <  are 
real numbers, and this is the following inequality  

1
1 22

1 1

n n

i i
i i

μ
μ

τ τ
+

+

= =
≥            (11) 

Choose the following sliding surface: 
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s eλ=                  (12) 
where 1 2[ ,..., ]nλ λ λ λ= is a constant vector. 

In order to design the controller, we consider the 
following sliding mode switching surface  

sgn( ) , 1,2,...,i i i i is s s i nμρ δη= − − =      (13) 

where = i

i

s
s

η
α+

 is a continuous function, sgn( )⋅  

represents the sign function. 0iρ > and 0iδ > are gains.
α and 0 1μ< <   are constants. 

The control input is given as follows: 
1

1 2 3 1 2
1

3 1 2

( ) [( ) ( ) ( )

         ( ) ] ( )

u t J A J A J JA z f x f y

Jf z A y A x J q tϑ

−

−

= + − + +

− − − −
  (14) 

where 1 2[ , ... ]Tnq q q q= is a constant gain, and ( )tϑ   is 
the control input, which satisfies the following formula. 

    0
( )

    0
s

t
s

ϑ
ϑ

ϑ

+

−

≥
=

≤
              (15) 

From (14) and (12), the error system is re-expressed 
as follows: 

1 2 1 2 3( ) ( ) ( ) ( )e Ae A e q t D t D t JD tϑ= + + + + −     (16) 
From (12), (13) and (16), we get: 

1
1 2 1 2 3

1 1
1 2 1 2 3

1 1
1 2 1 2 3

1
1 2 1

( ) ( ( ) ( ) ( ) )

         = ( ( ) ( ) ( ) )

         = ( ( ) ( ) ( )

           sgn( ) )

         = ( ) ( ( )

t q Ae A e D t D t JD t e

q Ae A e D t D t JD t s

q Ae A e D t D t JD t
ss s

s

q Ae A e D t

μ

ϑ
λ

λ λ λ λ λ λ

ρ δ
α

λ λ λ λ

−

− −

− −

−

= − + + + − −

− + + + − −

− + + + −

+ +
+

− + + + 2 3( ) ( )

           sgn( ) )

D t JD t
s

s s
s

μ

λ λ

ρ δ
α

−

+ +
+

 

(17) 
Since the external disturbances 1 2( ), ( )D t D t and 3( )D t  

are unknown, the control law is rewritten as  
1

1 2( ) ( ) ( sgn( ) )st q Ae A e s s
s

μϑ λ λ λ ρ δ
α

−= − + + +
+

  (18) 

Theorem 1. By using the control law in (18), the 
combination projective synchronization of the system 
(1)-(3) can be achieved under the premise of satisfying 
the condition (19). 

( ) 0λ α β γ ρ+ + − <             (19) 
Proof  Lyapunov function is chosen as 

21
2

V s=                 (20) 

and the derivative of V  is worked out 
V ss=                  (21) 

From (12), (5) and (21), we obtain 

1 2 1 2 3 1

2 1 2 3 1

2 3

   = ( )
   = ( ( )
     ( ) ( ) ( ) ( )
     ( ) ( ) ( ))

V s e
s x y Jz
s A e A e A J A J JA z A y
A x f x f y Jf z D t
D t JD t Ju t

λ
λ
λ

=
+ −

+ + + − −
− + + − +
+ − −

    (22) 

and substituting the equations (16)-(18) into the 
equations (22), one gets 

1 2 1 2 3

1 1
1 2

2

1 2 3

2
1

1 2 3

   = ( ( ) ( ) ( )

   ( sgn( ) ))

   = ( ( ) ( ) ( )) sgn( )

   = ( ( ) ( ) ( ))

V s e
s Ae A e D t D t JD t

s
q q Ae A e s s

s

s
s D t D t JD t s s s

s

s
s D t D t JD t s

s

μ

μ

μ

λ
λ

λ λ λ ρ δ
α

λ δ
α

λ ρ δ
α

− −

+

=
+ + + −

− + + +
+

+ − − −
+

+ − − −
+

 (23) 

By Assumption 1, we can get 
2

1
1 2 3

2
1

1 2 3

2

( ( ) ( ) ( ))

   ( ) ( ) ( )

   ( )

   

s
V s e s D t D t JD t s

s

ss D t D t JD t s
s

s
s s

s

s

μ

μ

μ

μ

λ λ ρ δ
α

λ ρ δ
α

λ α β γ ρ ρ δ
α

ρ

+

+

= = + − − −
+

≤ + + − −
+

≤ + + − − −
+

≤ −
(24) 

Through the lemma, we obtain 
2 2( ) 2V t V
μ μ

ρ≤ −              (25) 
The errors will tend to the set sliding surface in a 

limited time. Hence, the proof is completed. 
2

2
0

1 2
2

( ( ))

2 (2 )

V tT

μ

μ

ρ μ

−

−≤
−

           (26) 

III. FINITE-TIME COMBINATION SYNCHRONI- 
ZATION OF MEMRISTIVE FITZHUGH-NAGUMO 
SYSTEMS 

In order to prove the correctness of the designed 
controller, FitzHugh-Nagumo [14] based on memristor 
was selected as the research object for numerical 
simulation. Three memristive FitzHugh-Nagumo 
systems with different initial states were selected. 

The two drive systems are shown as 
( )1 2 1 1 1

1 1 11

2 1 2 1 12

= ( / )ln cosh 1.8sin( )
     ( / ) lncosh( )

( )

x x ax b d dx n

g b d n d
x c x x m d

τ+ + − +
+ − +

= − + + +
  (27) 

and 
( )1 2 1 1 2

2 2 21

2 1 2 2 22

= ( / ) ln cosh 1.8sin( )
    ( / ) ln cosh( )

( )

y y ay b d dy n

g b d n d
y c y y m d

τ+ + − +
+ − +
= − + + +

  (28) 

The corresponding slave system is described as 
1 2 1 1 3

3 3 31 1

2 1 2 3 32 2

( / ) ln cosh( ) 1.8sin( )
      ( / ) ln cosh( ) ( )

( ) ( )

z z az b d dz n
g b d n d u t

z c z z m d u t

τ= + + − +
+ − + +

= − + + + +
   (29) 

The system parameters and variables are set with
0.5, 0.5, 1, 1a b c d= = = = . 
From Eq. (27), (28) and (29), one easily obtains 

1 2 3

0.5 1 0.5 1 0.5 1
= , = , =

1 1 1 1 1 1
A A A

− − − − − −
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1 1 1 1
1

1

0.5ln cosh( ) 0.5ln cosh
( )

x n g n
f x

m
− + −

=  

 1 2 2 2
2

2

0.5ln cosh( ) 0.5ln cosh
( )

y n g n
f x

m
− + −

=      (30) 

1 3 3 3
3

3

0.5ln cosh( ) 0.5ln cosh
( )

z n g n
f x

m
− + −

=  

1 2 3

0.4cos(10 ) 0.5sin(30 ) 0.4sin(20 )
= , = , =

0.5sin(20 ) 0.3cos(20 ) 0.2sin(30 )
t t t

D D D
t t t

−
−

     

Assuming {3, 2}J diag= − , the error system is given 
as: 

1 1 2 2 1 1

1 1 2

2 3

1 3 1 2

3 11 21 31 1

2 1 2 1 1 2 3 12

0.5 5 0.5ln cosh( )
      0.5lncosh( ) 0.5ln cosh( )
      0.5ln cosh( ) 1.51ln cosh( )
      1.5lncosh( ) 1.8sin( )
      3 + 3 3

5 2

e e e z x n
n y n
n n
z n g g

g d d d u
e e e z m m m d

τ

= + − + −
− + −
− +
− − − + +
− + − +

= − − − + + + + + 22

32 2      2 2
d

d u+ −

    (31) 

And the control parameters are taken by [1,1],λ =  
[1,1] ,Tq = 1 3ρ =  and 1 3δ = . 
Thus, the result is obtained 

1 2
1 1

1 2 1 2

1 2

( ) 0.5 1.5 1.5
0.01 0.01

        1.5sgn( )

e et e
e e e e

s e e μ

ϑ = − −
+ + + +

− +

    (32) 

that is,            

1 2
1

1 2 1 2

1 2
1

1 2
1

1 2 1 2

1 2

0.5 1.5 1.5
0.01 0.01

1.5                                           0   
( )

0.5 1.5 1.5
0.01 0.01

+1.5                                          0 

e e
e

e e e e

e e s
t

e ee
e e e e

e e s

μ

μ

ϑ

− −
+ + + +

− + >
=

− −
+ + + +

+ <

 (33) 

The initial states of system in (27)-(29) are set by
1 1 1 2 2(0) [0,0], 0.1, 0, 0, (0) [2, 1], 0, 0x g m n y g m= = = = = − = =

2 0.2n = − and 3 3 3(0) [1,1], 0, 0, 0.3z g m n= = = = . respective- 
ly. Controller parameter is set by 0.6μ = , [0.01,0.01]Tα =
, [1,1], [1,1] , =[3,2]T Tqλ ρ= = and [3,2]Tδ = .Numerical 
results are plotted in Fig.1. From Fig.1, errors of the 
system can quickly approach zero and the systems 
(27)-(29) realize the combination projective 
synchronization in a limited time. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1 Synchronization simulation diagram:(a)the error 
curves of synchronization, (b) The trajectory of sliding 
surface,(c) Relationship between state variables 1 1x y+ and 1z
,(d) Relationship between state variables 2 2x y+ and 2z . 
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