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Abstract—To compare a pair of sentences is a fundamental 
technology in many NLP tasks. According to the difference 
between the pair of sentence, we divide semantic sentence 
matching into two situations: Situation A is that the pair of 
sentences are worded with a context relationship, Situation B 
is that two are equal in semantics. Models for Situation A 
works in Situation B too, so prior deep work mostly model 
each sentence’s representation considering the interaction of 
the other sentence simultaneously. However, models designed 
for Situation A bring redundant information for Situation B. 
In this paper, for sentence pairs with equivalence, we present 
a deep architecture with comparison-interaction separated to 
match two sentences, which based on Siamese network for 
comparison and multi-head attention for interaction 
information between sentence pairs. Experimental results on 
the latest Chinese sentence matching datasets outline the 
effectiveness of our approach.

Keywords- Siamese network; Multi-Head Attention; 
Semantic Matching;

I. INTRODUCTION

The purpose of modeling a pair of sentences is to 
distinguish the relationship between two sentences by 
comparing the semantics of them. In different tasks[1-2], we 
want to divide them into two situations: Situations A is the 
context relationship in Natural Language Inference, Answer 
Selection; Situations B is the equal relationship in 
Paraphrase Identification, Semantic Textual. Sentence pairs 
in Situations A are different in semantics, but they are 
related to each other, sentence pairs in Situations B are same 
in semantics. There is a key difference between the two 
situations: the percentage of same words in sentences pair 
in Situation A are higher than B. Table 1 shows examples 
of both cases.

TABLE 1. DIFFERENT SAMPLES IN SITUATION A AND B
Situations Tasks Sentence A Sentence B

Situation A Natural 
Language 
Inference

A soccer game 
with multiple 

males playing.

Some men are 
playing a sport.

Answer 
Selection

How to 
participate in 
meetings on 

online d uring 
the outbreak?

You can use a 
cloud-based 
peer-to-peer 

software 
platform called 

Zoom.
Situation B Paraphrase 

Identification
What shoud I 
do to avoid 
sleeping in 

class?

How do I not 
sleep in a 

boring class?

Semantic 
Textual 

Similarity
? ?

The division of semantic matching tasks into these two 
situations has never actually been mentioned before. The 
reason we split two situations is the need for more 
lightweight and effective models for Situation A. We will 
consider both the semantic differences and the interaction 
between the two sentences simultaneously, but the way we 
use differs from some existing models[3-6] etc. We propose 
a model which construct the “Siamese” architecture by two 
bi-directional GRU to encode two sentences in the same 
embedding space, and then aggregate the two sentences 
vectors using Jaccard distance. At the same time, we apply
a mechanism called Multi-Head Attention to interact the 
word vectors of the two sentences. Finally we get the final 
decision by combing the aggregated vectors both from 
“Siamese” architecture and Multi-Head Attention. We call 
it SNMA shorted for Siamese Network cooperating with 
Multi-head Attention. Fig. 1 gives an outline of SNMA 
based on Siamese network for comparison and multi-head 
attention for interaction information between sentence pairs.

Sentences P
Embedding

Sentences Q
Embedding

BatchNorm & 
SpatialDropout 

Maxpool & LayerNorm & 
Jacard

Avgpool & LayerNorm & 
Jacard

Add & Pool 
& LayerNorm

Concat

Multi-head Attention

BatchNorm & 
SpatialDropout 

Figure.1 Overview of our approach SNMA: Siamese Network 
cooperating with Multi-head Attention.
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II. OUR APPROACH

In our notation, we have two sentences P = {p1, p2,···, 
pm} and Q = {q1, q2, ···, qn} where P is a sentence with m 
words and where Q is a sentence with n words, the pi or qi 
will be encoded into an embedding of 300-dimensional 
vector. The goal is to predict a label y∈{0, 1} that indicates 
the logic relationship between P and Q, 0 means synonym 
pairs and 1 means non-synonym pairs.

A. Input layer
In this layer, we encode the sentences with pre-trained 

vectors and do some works on the vectors.
1) Embedding: Since the datasets are designed for 

Chinese short text semantic matching task, we can token 
the sentences into words or characters. It has been proved 
that the model based on word-level in Chinese datasets is 
better than that based on character-level [8]..

We use the jieba [9] to do word segmentation for the 
two Chinese sentences, and we get the pre-trained word 
vectors on the relevant corpus in advance using Word2Vec
[13]. We map each word or character to a high-dimensional 
vector space using these pre-trained word vectors. We 
found that trainable embedding layer may led to overfitting 
during training, so we set the embedding layer fixed. Fixed 
embedding can reduce the difference of word vectors 
between train-datasets and test-datasets. Now we have 
changed two sentences to ௉ܸ ∈ ܴ௠×ௗ and ொܸ ∈ ܴ௡×ௗ ,
where d is the dimension of the word vector.We set d=300 
for both word vectors and character vectors in order to try
the mixture of two kinds of vectors.

2) Normalization: The representation P and Q is 
passed to a Batch Normalization [10] layer and a Dropout
[11] layer, and the Dropout is SpatialDropout [12] actually 
which is proposed in image field. SpatialDropout set the 
elements in same dimension zero. Different dimensions in 
word vectors represent different semantics, so we can get 
different combinations of semantic information by zeroing 
different dimensions of word vectors. We get the 
representation V୔ ∈ R୫×ୢ and V୕ ∈ R୬×ୢ:௉ܸ = SpatialDropout (BatchNorm ( ௉ܸ)) (1)ொܸ = SpatialDropout (BatchNorm ( ொܸ)) (2)

B. Comparison: Siamese Network with Bi-GRU
In this layer, we extract the difference of sentences 

pairs with ‘Siamese’ architecture.
1) Encoding: We employ two Bi-GRU to encode the 

two sentences in order to learn the context around each 
word and get the representation of each word:ℎ௜௉=BiGRU (ℎ௜ିଵ௉ , ௜ܸ௉), i = 1,..., M (3)ℎ௜ொ=BiGRU (ℎ௜ିଵொ , ௜ܸொ), i = 1,..., M (4)

Where ௜ܸ௉ denotes the i-th word vector of P passed through 
input layer, ௜ܸொ denotes the i-th word vector of Q passed 
through input layer, ℎ௜௉ denotes the i-th element vector of P
passed through two Bi-GRU encoding, ℎ௜ொ denotes the i-th 
element vector of Q passed through two Bi-GRU encoding.  
We add two Bi-GRU encoding vectors for each word to get 
the final representations.

2) Pooling and Normalization: Pooling layer is used 
to extract features and minimize the dimensions. 
Considering the effect of sentence’s length on summation 
mechanism and the robustness of SNMA, both global 
average pooling and global max pooling are used at the 
same time. We can get the vectors ௔ܸ௩௚௉ , ௠ܸ௔௫௉ , ௔ܸ௩௚ொ , ௠ܸ௔௫ொ :௔ܸ௩௚௉ =∑ ௏೔ು௠௠௜ୀ଴ (5)

௠ܸ௔௫௉ ௜ୀ଴௠ݔܽ݉= ௜ܸ௉ (6)

௔ܸ௩௚ொ =∑ ௏೔ೂ௡௡௜ୀ଴ (7)

௠ܸ௔௫ொ = ௜ୀ଴௡ݔܽ݉ ௜ܸொ (8)
Where ௜ܸ௉ denotes the i-th word vector of P passed through 
the upper layer, ௜ܸொ denotes the i-th word vector of Q
passed through the upper layer; ௔ܸ௩௚௉ represents the 
sentence vector of P after global average pooling ௠ܸ௔௫௉
represents the sentence vector of P after global max pooling; ௔ܸ௩௚ொ represents the sentence vector of Q after global 
average pooling ௠ܸ௔௫ொ represents the sentence vector of Q
after global max pooling.

Then we adopt a LayerNormalization [16] to optimize 
easily and get a better result. With Layer Normalization, 
the neuron inputs of same layer have the same mean and 
variance; while with Batch Normalization, the neuron 
inputs of same batch have the same mean and variance. Due 
to Layer Normalization being insensitive to batchsize and 
the length of a sequence, we can get better result instead 
Batch Normalization. The LayerNormalization formula is 
as follows: ௜ݑ = 1݉ ෍ ௜௝௠௝ୀଵݔ (9)

௜ଶߪ = 1݉ ෍ ଶ௠௝ୀଵ(௜ݑ−௜௝ݔ) (10)

௜௝̂ݔ = ௜௝ݔ − ௜ଶߪ௜ඥݑ + ߝ (11)

3) Aggregation: Now we have four sets of pooling 
vectors. In this layer, we need to aggregate and compare 
sentences. Instead of using four-arithmetic operations 
between sentences vectors, we only use element-wise 
Jaccard distance to measure the distance between sentences 
vectors in each dimension. The Jaccard distance formula is 
as follows:

f( ௜ܸ௉, ௜ܸொ) = ∑ ௫೔௬೔∑ ௫೔మା∑ ௬೔మି∑ ௫೔௬೔ (12)

௠ܸ௔௫ = f( ௠ܸ௔௫௉ , ௠ܸ௔௫ொ ) (13)௔ܸ௩௚ = f( ௔ܸ௩௚௉ , ௔ܸ௩௚ொ ) (14)௠ܸ௔௫ represents the aggregated vectors from ௠ܸ௔௫௉ and ௠ܸ௔௫ொ calculated by Jaccard distance, ௔ܸ௩௚ represents the 
aggregated vectors from ௔ܸ௩௚௉ and ௔ܸ௩௚ொ calculated by 
Jaccard distance.

We concatenate both ௔ܸ௩௚௉ and ௔ܸ௩௚ொ as ୡܸ୭୬ୡୟ୲ୣୢ, then 
we use activation function ReLU [16] on it:୫ܸୣ୰୥ୣୢ =ReLU( ୡܸ୭୬ୡୟ୲ୣୢ) (15)୫ܸୣ୰୥ୣୢ represents the sentences pair aggregation 
representations, it will be aggregated will another 
aggregation representations from the block we are going to 
explain.

236



C. Interaction: Multi-Head Attention
In this layer, we extract the interactive features of 

sentences pairs with Multi-Head Attention.
1) Encoding: As shown in Fig. 1, we concatenate V୔ ∈ R୫×ୢ and V୕ ∈ R୬×ୢ as V୲ୣ୶୲ ∈ R(୫ା୬)×ୢ , then we 

pass it through a multi-head attention[16] to capture the 
interaction between sentences pair. The attention we 
applied is ‘Scaled Dot-Product Attention’:

Attention(Q,K,V) = softmax(ொ௄೅ඥௗೖ)V (16)

Attention( ௧ܸ௘௫௧ , ௧ܸ௘௫௧ , ௧ܸ௘௫௧) = softmax(௏೟೐ೣ೟௏೟೐ೣ೟೅ඥௗೖ ) ௧ܸ௘௫௧(17)

where Q,K,V represent query, key and value respectively, ݀௞ is a hyperparameter. We use the self-attention to encode 
the concatenated sentences, so Q,K,V all equal to ௧ܸ௘௫௧ .
Multi-head attention can use different attention to represent 
different locations, get better semantic information, and 
prevent overfitting effectively:௜ܸ௡௧௘௥ = Multi-Head(Q,K,V)= Concat(head1,head2,…,head8)Wo

(18)
headi = Attention(Q ௜ܹொ; K ௜ܹ௄; V ௜ܹ௏) (19)

where ௜ܹொ, ௜ܹ௄ , ௜ܹ௏ are all trainable weights.
2) Pooling: Now we have the vectors ௜ܸ௡௧௘௥ with 

interaction of sentences pairs. Similar to the pooling layer 
of the comparison module, but only one sentence vector is 
passed through here, we need to reduce the dimensions of ௜ܸ௡௧௘௥ . We use both global average pooling and global max 
pooling, obtain the aggregation representations by 
concatenating the results of two pooling layers:௔ܸ௩௚௜௡௧௘௥=∑ ௏೔೔೙೟೐ೝ௠௠௜ୀ଴ (20)

௠ܸ௔௫௜௡௧௘௥ = ௜ୀ଴௠ݔܽ݉ ௜ܸ௜௡௧௘௥ (21)௜ܸ௡௧௘௥=[ ௔ܸ௩௚௜௡௧௘௥;   ௠ܸ௔௫௜௡௧௘௥] (22)

D. Output
We get the final representation of the comparison 

module and the interaction module by concatenating the ୫ܸୣ୰୥ୣୢ and ௜ܸ௡௧௘௥:௔ܸ௟௟=Concat( ୫ܸୣ୰୥ୣୢ; ௜ܸ௡௧௘௥) (23)
The way we get ௔ܸ௟௟ has both the simplicity of the 

“Siamese” architecture and the explicit interaction of 
sentence pairs. We calculate the label using a final 
multilayer perceptron (MLP) classifier cooperating with  
ReLU activations and a output layer: sigmoid.

E. Loss Function and Metrics
1) Loss Function: In this paper, we use the sigmoid 

cross-entropy loss for training. The goal is to get the 
network’s parameters matching the minimum cross-
entropy between the true and predicted labels:

L(ݕො, ଵே-=(ݕ ∑ ݕ] log ොݕ + (1 − (ݕ log(1 − ො)]௫ݕ (24)

where ݕො  is prediction probabilities; y is the ground-truth 
label. The entire networks are trained end-to-end with 
backpropagation. 

2) Metrics: We evaluate all contests by accuracy and 
F1-score. Before calculating, we get definitions: True 
Positive which can be abbrevated to TP, its value denotes
the amount of correct synonym judgments; False Positive
which can be abbrevated to FP, its value denotes the 

amount of wrong synonym judgments; TN, short for True 
Negative, its value means the number of correct non-
synonym judgments; FN, short for False Negative, its value 
means the number of wrong non-synonym judgments. 
Then we can calculate the accuracy, and F1-score as 
follows
a) precision rate = TP/ (TP + FP); 
b) recall rate = TP / (TP + FN);
c) accuracy = (TP + TN) / (TP + FP + TN+ FN);
d) F1-score = 2 * precision rate * recall rate / (precision 

rate + recall rate).
The higher accuracy and F1-score indicate the better 
performance of a model, we use both.

III. EXPERIMENTS

A. Implementation details
We use the jieba [12] for word segmentation, employ 

Word2Vec [16] to train the embedding vectors of Chinese 
word and character respectively and each dimension of 
vector is 300. During training, we keep the embedding 
layer fixed, while the out-of-vocabulary words are 
initialized randomly. The SpatialDropout rate is set as 0.2. 
The numbers of hidden nodes in the first GRU is set to 384, 
and the numbers in the second GRU is set to 256. There are 
8 heads in multi-head attention, and each dimension of 
attention nodes is 16. We employ ReLU as the activation 
function and Nadam [17] whose learning rate is 0.0008 as 
the optimizer for back-propagation. When the F1-score had 
not improved for 3 epochs, we will try to offer the learning 
rate 20 percent discount. Besides, early-stopping is applied 
when the F1-score had not improved for 7 epochs. The 
batchsize of training stage is 256.

B. Experiments on ATEC Dataset
The dataset is derived from Ant Financial Artificial 

Competition(ATEC)[7], and all of them came from the 
actual application conditions of Ant Financial Brain. The 
contest is about question similarity calculation, and the 
contestants need to judge whether sentences pairs given by 
users in customer service have same meanings. The 
competition provides 100,000 pairs of annotated data as 
training data, including synonym pairs and non-synonym 
pairs. Each row in the dataset is a sample. The format is as 
follows:

TABLE 2 THE SAMPLE OF ATEC DATASET

index sentence 1 sentence 2 label
1 1

TABLE.3 EXPERIMENTALS ON ATEC DATASETS
Model name #para Acc of 

dev
F1 of dev F1 of test

Match Pyramid 8.1M 81.67 48.32 49.05
Decomposable 

Attention
2.0M 69.93 40.16 37.71

BCNN 1.6M 78.80 51.30 48.38
ABCNN 2.0M 75.14 44.57 43.36

ESIM 8.4M 81.32 49.89 50.72
SNMA 4.0M 82.26 53.92 54.16
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TABLE 4 ABLATION ON THE ATEC DEVELOPMENT DATASET
Ablation Model F1 of dev

Base model with chinese char 53.92
with chinese word instead 41.08

+chinese word 53.48
-max pool 52.45
-avg pool 48.00

-one bilstm layer 51.83
-multi-head attention 53.88

We split these 100,000 sentences pairs into training 
dataset and test dataset with 9:1 ratio, and then divide the 
training dataset into new training dataset and development 
dataset with 8:2 ratio. 

The experimental results of different models for 
ATEC datasets are shown in the table 3. All models do not 
use additional manual features. In addition to our own 
model SNMA, the other five models in the table are 
reproduced from relevant papers that have achieved great 
results in English datasets in the past. Our model achieves 
better results on this dataset than other models.

We can see from the ablation on the ATEC 
development dataset above, the embedding of word vectors 
we pre-trained is so bad that even we cannot improve the 
F1-score of the model when we mix the embedding of word 
and char vectors, although mixxing improves score the of 
Chinese words. Global average pooling play a more 
important role than global max pooling in comparison 
phase in ATEC dataset. As for multi-head attention phase, 
it works with light contribution due to the reason of 
splitting Situation A and B we talked before. 

IV. CONCLUSION

We proposed a novel model for Chinese semantic 
sentence matching, the experimental results on the latest 
Chinese sentence matching datasets outline the 
effectiveness of our approach. Our model SNMA mainly 
consists of a comparison and an interaction. The 
comparison is used to extract the difference of sentences 
pair and the interaction is applied to extract the interactive 
features. The model is designed on the fact that Chinese 
semantic sentence matching datasets with short sentences 
do not fit the interaction module of complex models 
completely. However, the disadvantage of “Siamese” 
architecture reminds us to add the interaction. We build our 
“Siamese” architecture cooperating with multi-head 
attention as SNMA. Semantic sentence matching always 
needs both the difference and interaction of sentences pair.
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