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Abstract- Many researchers have paid more attention to the 
application of non-negative matrix factorization (NMF) in 
data representation. Recently, some regularization methods 
can improve the performances by utilizing the data and 
feature manifold simultaneously. In this work, a new 
method, named dual graph regularized NMF with Sinkhorn 
distance (DSDNMF) is presented. It not only synchronously 
takes the data structure and feature structure into 
consideration, but also measures the reconstruction error by 
adopting the Earth Mover’s Distance (EMD) to make full use 
of the feature correlation. Therefore, DSDNMF can 
effectively explore the semantic structure information of 
data in contrast to traditional methods. Besides, we 
introduce an efficient strategy to optimize our proposed 
model. Comprehensive experiments on the COIL20 and PIE 
datasets manifest the superiority of DSDNMF.  

Keywords-NMF; data presentation; data manifold; feature 
manifold; EMD; semantic structure. 

I. INTRODUCTION 
Data representation plays a vital role in some fields, 

such as data mining and pattern recognition [1]. Through 
suitable representation, the clustering performance of 
high-dimensional data can be significantly improved. 
Unfortunately, traditional pattern recognition methods are 
not only computationally expensive in dealing with 
high-dimensional data, but also easily lead to so-called 
“dimensionality curses”. The goal of data representation 
methods is to effectively discover the latent semantic 
information hidden in data. In the past few decades, 
various data representation methods were developed to 
achieve this goal.  

Over the past decades, NMF is a particularly attractive 
method owing to its strong psychological and 
physiological interpretation [2]. Different from other 
methods, NMF imposes the non-negative constraint, and 
thus results in the part-based representation that may be 
represented in the same way as data in the human brain. 
NMF has shown excellence results in dealing with real 
high-dimensional data [3]. One drawback of the original 
NMF is that it neglects the latent manifold in the data, 
which can raise the representation capability in many 
tasks. To solve this issue, Cai et al. [4] discover the 
manifold structure embedded in data by constructing a 
nearest neighbor graph. Many studies proposed that the 
data space and feature space lie in a low- dimensional 
submanifold structure [5]. Shang et al. [7] further 
proposed to construct two dual graph regularizers to 
exploit the geometric structure in data and feature space. 
Tong et al. [7] introduced a dual graph regularized NMF 
method for hyperspectral unmixing by constructing two 
regularizers in both spectral space and spatial space. The 
above-mentioned methods use the l2 norm to measure the 
reconstruction cost and the distance between the samples. 
Therefore, the feature correlation of original data cannot 

be fully utilized in low-dimensional representation space. 
To alleviate this problem, Roman Sandler et al. [8] 
proposed to quantify the cost by using EMD instead of 
Frobenius norm. EMD aims to reflect the minimal amount 
by moving the mass between two distributions, and thus 
has been applied to some real problems in recent years. 
Since EMD is insensitive to the relationship between 
different dimensional features, EMD based NMF can 
achieve more robust performance than traditional l2 norm 
based NMF [9]. Qian et al. [10] further proposed a 
nonnegative matrix factorization with Sinkhorn distance 
(SDNMF) method. It uses a graph regularizer to explore 
the geometric manifold structure effectively, and the 
correlation between features is fully considered by 
adopting an approximation of EMD as the metric. 

In this article, a new NMF algorithm, namely dual 
graph regularized NMF with Sinkhorn distance 
(DSDNMF), is proposed, which takes both data and 
feature structure and the feature correlation information 
into consideration. We employ Sinkhorn distance to model 
the relationship between different dimensional features. 
Meanwhile, the dual graph regularizer is adopted to 
preserve the local geometric structures in dual space. In 
addition, we propose an effective multiplicative updating 
algorithm to optimize the model. The experimental results 
manifest that our DSDNMF algorithm is better than other 
competitors. 

The framework of the paper is organized as follows. 
We briefly present the related works in Section 2. Details 
of our proposed DSDNMF algorithms are introduced in 
Section 3. In Section 4, the experimental results and their 
analysis are presented. Finally, we summarize the work in 
Section 5. 

II. THE RELATED WORK 

Given a data matrix 1 2[ , ,..., ] M N
nX x x x M N , each 

sample denotes a column of elements in matrix X. NMF 
tries to seek the matrices M DU M D and N DV N D  , and 
their product is to approximate the original matrix X . The 
model of NMF can be written as 
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III. THE PROPOSED METHOD 

A. Earth Mover’s Distance 
Given two histograms x  and y , the definition of 

their EMD is given as follows: 

0 , 1
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We call Eq. (3) as the transportation problem. pqT  stands 
for the amount of traffic from p to q. pqM  is usually 
defined by 1L  or 2L  distance, and denotes the ground 
distance between two samples. 

However, the computational complexity of EMD is 
very expensive.  Cuturi et al. [11] proposed an efficient 
optimization algorithm. They use the entropy 
regularization term to smooth classical optimal transport 
problem and show that the Sinkhorn-Knopps matrix 
extension algorithm can be used to calculate the optimal 
distance. We call the new distance as Sinkhorn distance, 
whose mathematical form is given as follows: 
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where 
,

( ) logpq pqp q
H T T T  denotes the entropy of 

T. 

B. Data and feature graph regularizations  
Many studies have proposed that the structure 

information among samples in both data and feature space 
lies on a low-dimensional manifold [6]. Therefore, we can 
derive a dual graph regularizer to preserve the geometric 
structures in dual space.  

In feature space, we can use the coefficient matrix V  
to effectively exploit the geometric manifold structure. 
Therefore, we formulate the data graph regularization 
term as follows: 

 2
1

,
min

n

V js j sV j s

R W v v       (5) 

where 1W  is the affinity matrix. Sinkhorn distance is 
used as the metric to construct the graph model. 

Similarly, we can explore the data manifold by using 
the basis matrix U . In data space, we give the data graph 
regularization term as follows:  

2
2

,
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m

U is i sU i s
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where 2W  is the affinity matrix. Similarly, Sinkhorn 
distance is used as the metric to construct the graph 
model. 

C. Objective function of DSDNMF 
Since the approximation error between X and Y are 

usually non-Gaussian distribution, we can improve the 
representation performance by adopting Sinkhorn 
Distance as the metric. Therefore, the model of SNMF can 
be written as follows: 

1
( , )

n

M j k jk
j

O d x u v .        (7) 

By integrating the graph regularizers (5) and (6) into 
formula (7), the loss function of DSDNMF is given as 
follows: 
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where  and  are the positive regularization 
parameters. It is obvious that the problem (8) is 
nonconvex in both U and V together, and thus it is only 
achieved local optimization solution. Similarly, we adopt 
the multiplicative iterative algorithm to solve (8). 
Therefore, we can present the rules of the problem (8) as 
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where *it
sT is the ( , )i t -entry of the optimal transportation 

matrix between sx and sy . 

IV. EXPERIMENTS 
We conduct some clustering experiments on COIL20 

and PIE datasets to evaluate our proposed DSDNMF 
method. Besides, some popular traditional methods, such 
as k-means (KM), NMF, GNMF, EMDNMF, SDNMF, and 
DGNMF, are compared with our proposed DSDNMF 
method.  

A. COIL20 dataset 
There are 1440 samples of 20 objects in the COIL20 

database. It captured 72 images from different angles to 
each object. The size of all sample images is 32×32. 
Figure 1 shows the examples from the COIL20 dataset. 

 
Figure 1. Some images in the COIL20 dataset  

In each time, P categories samples were randomly 
selected to investigate the performance of the proposed 
method. To be fair, all experiments were independently 
run ten times, and the average performances are recorded. 
Tables 1 and 2 report the final results of all algorithms 
with different P values on the COIL20 dataset. From these 
tables, we can find that the capability of the proposed 
DSDNMF method is powerful than other competitors 
regardless of the value of P. This is because DSDNMF 
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not only uses dual graph regularizers to explore the 
structure in dual space, but also uses Sinkhorn Distance as 
the metric to take advantage of the feature correlation of 
data. 

Table 1 Accuracy on COIL20 database 
P KM NMF GNMF EMDNMF SDNMF DGNMF DSDNMF 
10 0.647 0.598 0.727 0.650 0.752 0.733 0.790 
12 0.635 0.538 0.732 0.655 0.759 0.745 0.770 
14 0.631 0.620 0.720 0.629 0.726 0.731 0.754 
16 0.619 0.649 0.768 0.578 0.810 0.801 0.816 
18 0.580 0.655 0.746 0.577 0.785 0.762 0.807 
20 0.589 0.620 0.724 0.587 0.706 0.732 0.752 
avg 0.617 0.613 0.736 0.612 0.756 0.750 0.781 

Table 2 Normalized mutual information on COIL20 database 
P KM NMF GNMF EMDNMF SDNMF DGNMF DSDNMF 

10 0.717 0.736 0.821 0.728 0.822 0.821 0.837 
12 0.671 0.626 0.805 0.682 0.817 0.810 0.833 
14 0.726 0.721 0.831 0.699 0.834 0.841 0.844 
16 0.720 0.722 0.840 0.649 0.860 0.856 0.871 
18 0.701 0.721 0.868 0.675 0.870 0.849 0.893 
20 0.711 0.702 0.839 0.691 0.856 0.844 0.872 
avg 0.707 0.704 0.834 0.687 0.843 0.837 0.858 

B. PIE dataset 
There are 41,368 samples of 68 individuals on PIE 

database. The size of each image is 32×32. For 
convenience, we randomly picked out 50 samples from 
each category for clustering. Figure 2 shows some 
examples of the PIE face database.  

 
Figure 2. Some images in PIE face dataset 

In the second experiment, we also adopted the 
experimental scheme as above. Table 3 and Table 4 
display the performances of seven algorithms on the PIE 
dataset. We can see clearly that DSDNMF outperforms all 
competitors. The main reason is that the dual graph 
regularizers can utilize the latent structure embedded in 
dual space effectively, and the Sinkhorn Distance is 
adopted to model the relationship between different 
dimensional features.  

Table 3 Accuracy on PIE face database 
P KM NMF GNMF EMDNMF SDNMF DGNMF DSDNMF 
36 0.164 0.271 0.461 0.245 0.468 0.455 0.475 
40 0.177 0.297 0.443 0.273 0.437 0.421 0.463 
44 0.184 0.263 0.454 0.261 0.452 0.410 0.462 
48 0.193 0.299 0.514 0.278 0.460 0.425 0.476 
52 0.191 0.278 0.441 0.254 0.430 0.413 0.470 
56 0.193 0.285 0.488 0.287 0.502 0.456 0.495 
60 0.177 0.289 0.458 0.246 0.459 0.398 0.476 
avg 0.183 0.283 0.465 0.263 0.458 0.425 0.473 

Table 4 Normalized mutual information on PIE face database 
P KM NMF GNMF EMDNMF SDNMF DGNMF DSDNMF 
36 0.289 0.465 0.590 0.409 0.584 0.569 0.611 
40 0.325 0.501 0.587 0.469 0.583 0.574 0.605 
44 0.336 0.470 0.618 0.466 0.610 0.598 0.625 
48 0.370 0.522 0.685 0.486 0.687 0.604 0.659 
52 0.360 0.506 0.574 0.488 0.598 0.561 0.618 
56 0.387 0.522 0.654 0.503 0.654 0.614 0.661 
60 0.390 0.528 0.641 0.469 0.625 0.590 0.647 
avg 0.351 0.502 0.621 0.470 0.620 0.587 0.632 

C. Parameters selection 
Since the different parameter settings have a certain 

influence on the performances, we conducted some 
experiments to analysis the sensitivity of the parameters. 
We display the results of DSDNMF by varying the 
parameters ,  and . For simplicity, we set the 
same values of the parameters  and .  Specifically, 
their values are set as [0.001, 0.01, 0.1, 1, 10, 100], 
respectively and the parameter  is set as [1, 10, 50, 100, 
500, 1000]. Figures 3 and 4 show the clustering result of 
DSNMF by varying values of the parameters  and  
on COIlL20 and PIE image datasets. Figures 5 and 6 show 
the performances of DSDNMF varied with parameter  
on the COIlL20 and PIE datasets. It is obvious that 
DSDNMF can achieve a stable performance when these 
parameters vary in a wide range.  

Figure3: Clustering performance on the COIlL20 with varying the 
parameters . 
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Figure4: Clustering performance on the PIE with varying the parameters 
.  

 

 
Figure5: Clustering performance on the COIlL20 with varying the 

parameter . 

 

 
Figure6: Clustering performance on the PIE with varying the 

parameter . 

V. CONCLUSIONS 
In this work, we present a new algorithm, named 

DSDNMF, which utilizes the correlation information of 
features and the dual manifold structure, simultaneously. 
Specifically, we employ the Sinkhorn distance as the 
metric to measure the reconstruction errors, and thus can 
fully utilize the feature correlation. In addition, we adopt a 
dual graph regularizer to preserve both data and feature 
manifold in low-dimensional representation space. An 
efficient multiplicative iteration strategy is used to 
optimize the proposed model. The experimental results 
manifest that our DSDNMF method outperforms other 
competitors in clustering. 
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