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Abstract—Due to the excellent performance in exploring the
structure of low-dimensional subspaces, the low-rank
representation (LRR) has recently attracted wide attention
of the researchers. However, in most current semi-
supervised learning problems based on LRR method, the
two steps of graph construction and semi-supervised
learning are separated. Therefore, the existing label
information cannot be well used to guide the construction of
the affinity graph. Thus, these methods cannot guarantee the
results are the global optimal solutions. In this paper, we
propose a graph regularized low-rank representation for
semi-supervised learning, termed as GLRSC. Combing the
construction of the affinity graph and the semi-supervised
learning, and solving the joint optimization, the proposed
GLRSC method can get the global optimal solution. The
experimental results on some benchmark datasets show that
the effectiveness of the proposed GLRSC method.

Keywords- low-rank and sparse representation; semi-
supervised learning; graph construction

L INTRODUCTION

In most of the computer vision and pattern recognition
problems, we often face the problem of insufficient labeled
data, while the acquisition of the label information is very
difficult and expensive. However, the data we can widely
obtain is often unlabeled. This brought great difficulties to
the machine learning problem. Semi-supervised learning
(SSL) can make full use of the limited labeled data and the
large number of the unlabeled data. In the current semi-
supervised learning methods, the graph-based SSL (G-SSL)
is particularly attractive, mainly because of its success in
the practical application and the computational efficiency.

The graph based semi-supervised learning methods
heavily rely on the construction of a graph G = (V, E)
which can represent the data structures, where V' is the
vertex set of the dataset and F is the edges set of the graph
associated with the weight matrix W. Through the graph,
information of the labeled samples in the dataset can be
efficient and effective propagated to the rest of the
unlabeled samples in the dataset. Therefore, for many
machine learning tasks such as clustering and classification,
it is very important to construct a good graph which can
represent the structure of the dataset.

Although from the data, we can discover millions of
such a kind of relationship, recent studies on low-rank and
sparse representation show that the selection of pairwise
relationship are very important. Yan et al. [1,2] put
forward a method to construct the /;-graph based on sparse
representation (SR) [3] which solves a l; optimization
problem. However, a disadvantage of the sparse
representation-based methods is that they cannot describe
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the global structure of the data. In order to capture the
global structure of the whole data set, Liu et al. proposed
the low-rank representation (LRR) [4] method and use the
coefficients to construct an undirected affinity graph.
Under the global low-rank constraint, the LRR-graph
based methods can capture the global structure of the
whole data set. However, compared with the /-graph, the
LRR methods tend to result in a dense graph, and that is
not desirable for semi-supervised learning methods based
on graph. In addition, as the representation coefficients
may be negative, which lack physical meaning for many
image processing problems. In addition, in order to
preserve the local structure of the data, a graph
regularization term was added to the objective function of
the LRR method to propose a graph regularized low-rank
representation method [5], this method can be used to well
describe the hyperspectral images.

Although the methods based on low-rank
representation and sparse representation have gained a
great success, these methods still have several obvious
disadvantages. In most graph-based semi-supervised
learning methods, the structure of the graph is often pre-
defined. Therefore, the graph construction and the semi-
supervised learning are often two independent steps, in this
way, these algorithms cannot to obtain an overall optimal
solution. As the semi-supervised learning algorithms
heavily depend on the construction of the graph,
integrating the semi-supervised learning and the graph
construction is necessary to solve jointly.

Motivated by the above analysis, we proposed a novel
graph regularized low-rank representation method for
semi-supervised learning (GLRSC). The idea of the entire
learning process is that, the construction of the graph and
the semi-supervised learning should be simultaneously
performed to get a global optimal solution. In such a
simultaneously learning scheme, the label information of
the samples can be propagated accurately in the learning
process via the graph structure.

In summary, our main contributions in this paper lie in
the following aspects:

(1) Unlike previous G-SSL methods, in which the
graph structure and the designed algorithm are often
independent steps, GLRSC integrates these two tasks into
one single optimization step to guarantee an overall
optimum.

(2) By incorporating graph regularization and sparse
constraint into LRR learning, the proposed method takes
into account the intrinsic geometrical structure of the
recovered data. GLRSC simultaneously captures the
intrinsic local and global structure of the high-dimensional
data.



II.

In this section, we briefly introduce the LRR and
GLRR [6], and the semi-supervised classification
framework used in the paper.

A. LRR and GLRR

Let X = [x1,%2, - ,Zn] € R be a set of n data
points in d-dimensional space. The goal of the low-rank
representation (LRR) is to represent each data sample as a
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linear combination of the bases in
A=[a1,a2, - ,am] € R*™ as X =AZ , where
Z = [z1,%22, "+, 2y| is the matrix with each z; being the

representation coefficient of sample ;. Each element in z;
can be regarded as the contribution of the reconstruction of
x; with A as the basis. However, when the dictionary A is
over-complete, there will be a lot of feasible solution to
this problem. Low-rank representation (LRR) find the
lowest rank solution by solving the following optimization
problem:

ming,g |Z], + MEl|lz; 3)

St. X=AZ+FE

where ||Z]||, represents the nuclear norm, which is
defined as the sum of all the singular values of Z, the I3 ;-
norm is defined as [|E|,, = E;L:I Z?zl e?j
parameter A is used to balance the effect of low-rank term
and error term.

In order to preserve the intrinsic manifold structure of
the dataset, a graph regularization term is introduced into
the objective function of LRR, and proposed the GLRR [6]
method, the objective is defined as follows:

minz,g 2], + A Bll,, + Btr(ZLZT)
St. X=AZ+E

where L is the graph Laplacian constructed by
“HeatKernel” function in the Euclidean space. This model
emphasizes the importance of the local consistency of the
data while ignore the repulsion information of the dataset.

and

“)

B.  Semi-supervised classification

In this section, we present a kind of very popular semi-
supervised learning method, Gaussian Fields and
Harmonic Functions (GFHF) [7]. Suppose Y € R™*¢ is
the label matrix, where Y;; = 1 if sample x; is associated
with label j for j € {1,2,---,c} and Y;; = 0 otherwise.
F € R™*¢ is the predicted label matrix, and it is estimated
on the graph which takes the label fitness and the manifold
smoothness into consideration. Let us denote F; and Y; as
the ith rows of F' and Y, respectively. GFHF minimizes
the following objective function

ming 33721 1B = F5l1? Sij 4+ Aoo iy |1F = Yill? (5)

where Ao, is a very large number such that
S E— Y;||* = 0is approximately satisfied and F is
the predicted labels for all the samples. S™*" is the graph
weight matrix which represents the similarity of a pair of
training samples. The above problem can be also
reformulated as

ming 3tr(FTLF) +tr((F - Y)TU(F - Y)) (6)

where L € R™*™ is the graph Laplacian matrix and
calculated as L =D — S, where D;; = Zj Sij is a
diagonal matrix. U € R™*" is also a diagonal matrix with
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the first w and the rest (n — u) diagonal elements as A
and 0, respectively.

II. GRAPH REGULARIZED LOW-RANK REPRESENTATION
FOR SEMI-SUPERVISED LEARNING
In this section, the graph regularized low-rank

representation for semi-supervised learning (GLRSC) is
introduced. The goal of the proposed GLRSC method is,
under a unified optimization framework, to perform the
construction of the graph and the semi-supervised learning
at the same time, thus, we can get an overall optimal
solution.

A.  Objective function of GLRSC

In GLRSC, the graph learning and semi-supervised
learning are simultaneously completed within one step.
Based on low-rank representation theory and GFHF, we
propose the following objective function of GLRSC

mingz,p Y1 271 |Fi — Fj|1? Zi;
+tr(F=Y)TU(F —-Y))
+1Zl. +allZlly + Btr(ZLZT) + 7 || Ell,,y

St.X=AZ+E,Z>0

where a, (3, v are the parameters, which are used to
balance the importance of the corresponding in the
objective function. The first two items are a semi-
supervised learning framework. The third term uses the
low-rank constraint to guarantee the affinity matrix Z to
capture the global mixture structure of the subspaces. The
fourth term uses the /;-norm to enable the sparsity of the
coefficients. The fifth term is the Laplacian regularizer, it
takes into account the intrinsic geometrical structures
within the data. As for the effect of noise, we use I ;-norm,
the I 1 -norm encourages the columns of E to be zero,
which assumes that the corruptions are “sample-specific”,
i.e., some data vectors are corrupted and the others are
clean. The non-negative constraint on Z aims to guarantee
that the coefficients are meaningful and better embody the
dependency among the data points.

B.  LADMAP for solving GLRSC

In order to put forward an effective method to solve the
problem (7), we use the linearized alternating direction
method with adaptive penalty (LADMAP). In order to
make the objective function separable, we introduce two
auxiliary variables W and J . Thus the optimization
problem can be rewritten as follows:

mingzp iy 2y |Fi — Fj|I? Wij +

tr(F-Y)TU(F -Y)) +

121l + el Jlly + Btr(ZLa ZT) +~ || Elloy  (8)
St. X=AZ+E, Z=W,Z=J,J>0

To remove three linear constraints in (8), we can
introduce three Lagrange multiplier Y; , Y5 and Y3,
therefore, the optimization problem can be rewritten as the
following unconstrained minimization problem:

ming,z,B Yoie1 g IFi — F5l> Wij +
tr(F-Y)TU(F -Y)) +

121, +allJlly + Ber(ZL1ZT) + v || Elly, +
(Y1,X — AZ — B) + (Y2, Z - W) + (Y3, Z — J) +
L(IX - AZ - B} + 12 - W% + 12 - JI3)

N
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W(Z,W,J,E,Y1,Y2,Y3) = Btr(ZL12ZT) +
x4z 4 bl gz w el
where £ ||Z -J+ iY3H2
F
and (A, B) =tr(ATB). 4 >0 is a penalty parameter.
This problem can be easily solved by alternately updating
one variable while others fixed. Then, the multipliers are
subsequently updated and the whole optimizing procedure
is done in an iterative way till the convergence conditions
are met.
A. Computation of Z
Solving (9) w.r.t. Z is equivalent to optimizing the
following objective:
Ziy1 = argming || ZI|, + (V29(Zx)) + 245 1|12 — Zk||% (10)
where V z is the partial differential of ¥ with respect
to Z. (10) has a closed-form solution given by:

Zgia zeﬁ(zk—VZd’(Zk)/a) (11)

where 0 = ||A||§,, ©(-) denotes the singular value
thresholding operator (SVT).

B. Computation of J

Similarly, solving (9) wurt. J is equivalent to
optimizing the following objective, while other variables

are fixed to their current value
‘2

Jewr = argming a7l + 5 |7 - A v (12)
The sub-problem (12) has the following objective
function:
Jp+1 = maz {S% (Zrt1 + H—lst,k)yﬂ} (13)
where S(+) denotes the shrinkage operator.
C. Computation of F/
The sub-problem for updating E' can be recast as:
Ejt1 = argming v ||Elly, +
- azwn s 2o o]
The solution is defined by
Epy1= F%(X —AZpi1 + ﬁYLk) (15)
where I'(-) denotes the 5 1 minimization operator [9].
D. Computation of W
Solving (9) w.r.t. W is equivalent to optimizing the
following objective:
Wi41 = argminw o tr(E(RO W)) +

[~ e+ v

(14

(16)

where R;; = 1 ||F; — Fj||2, ©® is a Hadamard product
operator of matrix and = is a matrix with all elements are
ones. We decompose problem (16) into n independent

sub-problems each of which can be formulated as a
weighted non-negative sparse coding problem, namely

minw, Yg_i (W) © R} +
. Y- J12
e | (W)t = (Ziga + 27| a7

SLW>0
where (W},)§ and (R)! are the g-th elements of i-th
columns of matrix Wy, and R respectively.
E. Computation of F’
The sub-problem for updating F' can be recast as:
Fop1 = arg ming 20 20 || For — Fjll> Wig i
| tr((F, —Y)TU(F, —Y))
= arg minptr((F,)T LaFy) + tr((F, — YYTU(F, — Y)) (18)
where Ly € R™™™ is the graph Laplacian matrix and
calculatedas Ly = D — W, D;; = Zj W;; is the diagonal

matrix. It is straightforward to set the derivative of (18)
with respect to F' to zero, namely
8(minptr((Fk)TFk) +
tr((F, = Y)TU(F — Y)))/0F; =0
Then, we have

(19)

Fep1 = (L+U)"IUY (20)

IV. EXPERIMENTS

A. Experiment setup

Datasets: we test our proposed method on three public
datasets for evaluation: Extended Yale B, CMU PIE and
USPS. Some sample images from these four image

(©)

Figure 1. Sample images from ORL, Extended Yale B, CMU PIE and
USPS datasets. (a) Extended Yale B (b) CMU PIE (c) USPS

Comparison Methods: We compare our proposed
graph construction methods with the following state-of-
the-art baseline methods: KNN-graph, LLE-graph[8], I;-
graph[2], SPG[9], LRR-graph[4], GLRR-graph[6],
NNLRS-graph[10].

B.  Experimental studies

The purpose of semi-supervised learning task is to
reveal more unlabeled information with limited known
labeled data. Therefore, we select the percentage of labeled
samples range from 10% to 60% and the rest as unlabeled
samples. The parameters of the GLRSC method are set as
a=05, 3=0.01, y=10. For fair comparison, we
record the indices of the randomly selected labeled
samples under each level and use these indices for all
above mentioned methods. For each configuration, we
conduct 50 independent runs for each algorithm. Table 1 to
3 report the experimental results.
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TABLE L CLASSIFICATION ACCURACY (%) ON EXTENDED YALE B
]S“;z;lg 10% 20% 30% 40% 50% 60%
KNNGS) | 67.11 | 6891 | 7144 | 7365 | 7522 | 77.02
KNN@®) | 63.16 | 6441 | 6646 | 69.03 | 7027 | 71.42
LLE®) | 71 7416 | 77.76 | 80.18 | 82.39 | 84.25
LLE(10) | 7024 | 7335 | 77.17 | 80.1 82.35 | 84.06
li-graph | 53.18 | 49.67 | 47.67 | 4284 | 3421 | 2244
SPG 83.63 | 87.61 | 9043 | 9293 | 9437 | 9558
LRR 7178 | 7554 | 7767 | 80.58 | 8196 | 83.91
GLRR | 7383 | 7562 | 7791 | 8077 | 8234 | 8433
NNLRS | 9444 | 9469 |9571 | 9625 | 96 96.77
GLRSC | 9498 | 9536 |96.16 | 9684 | 9661 | 97.49
TABLE IL CLASSIFICATION ACCURACY (%) ON CMU PIE




sL:rE;llee(i 10% | 20% | 30% | 40% | 50% | 60%
KNNG5) | 6572 | 66.94 | 69.89 | 71.54 | 73.04 | 74.91
KNN(8) | 63.58 | 63.89 | 6649 | 67.85 | 69.55 | 70.91
LLE®S) | 6775 | 69.58 | 7348 | 7638 | 7835 | 80.44
LLE(10) | 6747 | 69.17 | 7299 | 7599 | 77.78 | 79.98
_graph | 7829 | 82.82 | 87.94 | 90.99 | 9339 | 94.87
SPG 8025 | 84.55 | 89.29 | 91.75 | 93.71 | 95.05
LRR 68.74 | 7018 | 7439 | 7614 | 78.76 | 79.95
GLRR | 6973 | 7125 | 7515 | 7698 | 7991 | 81.2
NNLRS | 8778 | 8937 | 90.18 | 92.92 | 96 95
GLRSC | 88.57 | 9049 [ 91.03 | 9416 | 9692 | 96.31
TABLEIIl.  CLASSIFICATION ACCURACY (%) ON USPS

SL:IEZIIE;‘; 10% | 20% | 30% | 40% | 50% | 60%
KNNG) | 9687 | 97.78 | 9845 | 988 | 99.18 | 99.35
KNN@) | 9679 [ 979 | 9847 | 9882 |[99.14 | 9928
LLE®) | 7231 | 7757 | 8082 | 8338 | 85.72 | 87.39
LLE(10) | 6434 | 71.04 | 747 | 7747 | 7999 | 8231
graph | 6648 | 73.58 | 81.08 | 83.36 | 88.33 | 9L.11
SPG 93.08 | 9596 | 97.31 | 98.12 | 98.86 | 99.17
LRR 9651 | 98.17 | 9878 | 99.08 | 99.39 | 99.51
GLRR | 96.57 | 98.17 | 98.81 | 98.99 | 9938 | 99.51
NNLRS | 972 | 9838 | 9887 |99.12 | 99.41 | 99.52
GLRSC | 9775 | 98.83 | 99.08 | 9939 |[99.6 | 99.64

From the experimental results, we can observe that:

1. In most cases, compared to other graph based semi-
supervised learning algorithms, the proposed GLRSC
method can consistently get the highest classification
accuracy, even with low labeled samples rate.

2. Compared with NNLRS method which also use the
sparse and low-rank constraints to construct affinity graph,
the proposed GLRSC method is able to use the label
information to construct affinity matrix effectively. In most
cases, the improvement of the classification accuracy is
obvious.

3. Among the compared methods, I;-graph uses the
sparse constraint, SPG-graph imposes non-negative sparse
constraint on the affinity matrix, such constraint only
captures locally linear structure of the data. LRR-graph
imposes the low-rank constraint which can capture the
global mixture of subspaces structure, however, it often
results in a dense graph which is undesirable for G-SSL.
The proposed GLRSC method integrate the advantages of
low-rank and sparse representation. The experimental
results have also proven the effectiveness.

There are three parameters affecting the performance
of our proposed GLRSC method. o and 3 are parameters
to control the impact of sparse constraint and local affinity
constraint respectively. v is to deal with the gross
corruption errors in the data. Similar to the previous
experimental settings, we run GLRSC on each
combination of parameters 50 independent times on
Extended Yale B dataset. We select 50% samples as
labeled and the remaining as the unlabeled samples. Fig. 2
shows the experimental results.
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Figure 2. Classification accuracy with varied parameters

@ a(b) By

From Fig. 1, we can see that, the performance of
GLRSC is much stable when «, 8 and v vary in relative
large ranges. av is used to balance the sparsity, when the
value of v is small, the performance also decreases. This
means that both low rankness and sparsity property are
important for graph construction. As for 3, when we set a
big value, the accuracy will decrease. -y is to deal with the
gross corruption errors in the data. And the experimental
suggest a wide range is appropriate for the selection of 7.

V.  CONCLUSION

In this paper, we propose a novel semi-supervised
subspace clustering method named GLRSC, in which the
label information is used to guide the affinity construction.
Moreover, GLRSC integrates the affinity construction and
semi-supervised subspace clustering into one step to
guarantee an overall optimum. An associated efficient
iteratively linearized ADM with adaptive penalty
(LADMAP) is introduced to solve the optimization
problem, which uses less auxiliary variables and less
matrix inversion. The experimental results on three
datasets show that our novel method compared with the
state-of-the-art approaches is more effective.
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