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Abstract—Linear discriminant analysis (LDA) is one of the
most popular parametric classification methods in machine
learning and data mining tasks. Although it performs well
in many applications, LDA is impractical for high-dimensional
data sets. A primary reason for it is that the sample covariance
matrix is no longer a good estimator of the actual covariance
matrix when the dimension of feature vector p is close to
or even larger than the sample size n. Here we propose to
regularize LDA classifier by employing a consistent estimator
of high-dimensional covariance matrices. Using the theoretical
tools from random matrix theory, the covariance matrices
in high-dimensions are estimated in a linear or nonlinear
shrinkage manner depending on the relationship between the
dimension p and the sample size n. Numerical simulations
demonstrate that the regularized discriminant analysis using
random matrix theory yield higher accuracies than existing
competitors for a wide variety of synthetic and real data sets.
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I. INTRODUCTION

Linear discriminant analysis is a well-established super-

vised learning technique applicable in a variety of areas

[1], [2]. As a model-based classifier, it aims to allocate a

data point into one of the predefined classes on the basis

of a number of feature variables. Compared with other

classification algorithms such as random forests or support

vector classifier, the model constructed in LDA is more

interpretable and easy to make predictions.

In the present era of ”Big Data”, high-dimensional data

sets are now generated and collected in almost all fields

[3]. The most direct manifestation of high-dimensional data

is that its dimension p is not fixed but becomes large

together with the sample size n, which is called large

n, large p asymptotics. Thus high-dimensional data will

transcend the boundary of classical multivariate statistics

where we implicitly assume that the dimension of feature

vector p is fixed while the sample size n tends to infinity.

High-dimensional data brings great challenges to statistical

learning techniques, including LDA. The linear discriminant

classifier becomes inefficient in high dimensional settings.

One important reason is that the sample covariance matrix S
in high dimensions is singular (noninvertible) or very close

to being singular. It is no longer a good approximation to

the population covariance matrix Σ under high dimensional

asymptotics and leads to high misclassification error rates.

To cope with the singularity of sample covariance matri-

ces, the procedure of ridge regression or diagonal loading

is proposed in [4]. By artificially adding a positive diagonal

matrix to the singular sample covariance matrix, it converts a

singular sample covariance matrix into an invertible covari-

ance. Similar modifications have been proposed by Friedman

to regularize the covariance estimation in LDA, which bring

forth the popular regularized discriminant analysis [5]. But

how to choose the optimal regularization parameter is a

long-standing research problem. Ledoit and Wolf derived an

asymptotic optimal formula to estimate the regularization

parameter and proposed an consistent estimator for the

precision matrix, i.e., the inverse of the covariance matrix

[6]. However, the method applies only to the situation that

the number of features p is less than the sample size n.

Random matrix theory as a powerful theoretical frame-

work is believed to meet the challenges of high-dimensional

data, since the large p, large n settings in high-dimensional

data analysis fall exactly into the realm of random matrix

theory. Motivated by the recent developments in random

matrix theory [7], [8], we propose to regularize the linear dis-

criminant classifier by optimally shrinking the eigenvalues of

the sample covariance matrix while keeping the eigenvectors

unchanged. An extensive simulation analysis is conducted to

test the performance of our algorithm in high-dimensional

settings. The results show that our algorithm is more flexible

and obtains lower misclassification rates for a variety of data

sets.

II. PRELIMINARIES TO LINEAR DISCRIMINANT

ANALYSIS

In linear discriminant analysis, one or more new data

points (observations) are classified into one of the predefined

classes (groups) based on the observed features (variables).

LDA is based on the assumption that every probability

density within the kth class is following a multivariate

Gaussian distribution Np(μk,Σk), i.e., the p-dimensional

joint probability density function for the kth class can be

modelled as:

fk(x) =
1

(2π)p/2|Σk|1/2 e
− 1

2 (x−μk)Σ
−1
k (x−μk)

T

(1)
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where μk and Σk, k = 1, 2, . . . ,K, are the mean vector

and the covariance matrix for the kth class, respectively. It

is assumed further in LDA that the variables for each class

share the same covariance matrix, Σk = Σ, k = 1, . . . ,K.

For a new observed data vector x ∈ R
1×p, the posterior

probability P (G = k|x) that x belongs to class k can be

obtained by using Bayes’ rule

P (G = k|x) = fk(x)πk∑K
l=1 fl(x)πl

, (2)

where πk is the prior probability of class k. The optimal

classification is obtained by selecting the class k which

maximize the class posteriors P (G = k|x),
Ĝ1(x) = argmax

k
P (G = k|x). (3)

Another equivalent, yet simple, description of the decision

rule in (3) is

Ĝ2(x)=argmax
k

{xΣ−1μT
k −

1

2
μkΣ

−1μT
k + log πk}.

(4)

In practice, the mean vector μk, the covariance matrix

Σ and the prior probability πk in (4) are estimated using

the training data matrix X ∈ R
n×p which consists of n

labelled observations of the p-dimensional feature vectors.

In particular, the covariance matrix Σ can be set equal to the

overall sample covariance K = 1
n−1 (X −X)T(X −X)

with X denoting the sample mean.

III. RANDOM MATRIX REGULARIZED LINEAR

DISCRIMINANT ANALYSIS

The sample covariance matrix K converges almost surely

to Σ only in the case where p << n. In the cases where

p is close to, or even larger than n, the sample covariance

matrix K will become ill-conditioned or even singular. So

the precision matrix Σ−1 in (4) is badly estimated and result

in inefficient classifications. In this section, we propose

to regularize the linear discriminant analysis by using a

consistent estimator of the covariance Σ from random matrix

theory.

A. Estimation of the covariance based on random matrix
theory

By considering the number of variables p relative to the

sample size n in the high-dimensional setting, two different

methods from random matrix theory, namely, the rotational

invariant estimation method and the eigenvalues clipping

method, are employed to estimate the covariance.

1) The case of n ≥ p: As above, we denote the p×p pop-

ulation covariance matrix by Σ. And the sample covariance

matrix which is obtained from the training data matrix X is

denoted by K. In the case where the number of variables p
is close to the sample size n, the sample covariance matrix

K is ill-conditioned or near singular.

To overcome the near singularity of K, the rotational

invariant estimator is proposed, which can be seen as a

optimal nonlinear shrinkage procedure. Before we go into

the rotational invariant estimation procedure, we first shift

the sample vectors in X to zero mean, to eliminate the effect

of different scales. By doing so, we are actually handling the

empirical correlation matrix C. It has been demonstrated in

[7] that C and K share identical statistically properties when

n→∞, p→∞ up to a rank one perturbation. So we shall

work with K henceforth.

In the rotational invariant estimator, the spectral decom-

position of Σ is

Σ =

p∑
i=1

μiviv
†
i (5)

where μi, i = 1, . . . , p, are the real eigenvalues of Σ and

vi, i = 1, . . . , p are the corresponding eigenvectors. Simi-

larly, the sample covariance matrix K can be decomposed

as

K =

p∑
i=1

λiuiu
†
i (6)

with the eigenvalues λi and the corresponding eigenvectors

ui of K. The rotational invariant estimator is expected to

find an estimator Ξ(K) of the population covariance matrix

Σ from K in a rotationally invariant way. More formally,

the estimator Ξ(K) satisfies:

Ω Ξ(K) Ω† = Ξ(ΩKΩ†) (7)

for any rotation matrix Ω. It has been shown that any rota-

tional invariant estimator Ξ(K) shares the same eigenbasis

as K[9], that is,

Ξ(K) =

p∑
i=1

ξiuiu
†
i (8)

where the eigenvalues [ξi]i∈[[1,p]] are the quantities that the

rotational invariant estimator wish to estimate.

Given the sample covariance K with the eigenvalues λi

and the corresponding eigenvectors ui, i ∈ {1, . . . , p}, an

optimal rotational invariant estimator is

Ξ̂(K) =

p∑
i=1

ξ̂(λi) uiu
†
i . (9)

Here ξ̂(λi) can be found using the Marchenko-Pastur law

in random matrix theory and it is given by the following

nonlinear mapping [10]

ξ̂(λi) =
λi

|1− q + q zig
p
K(zi)|2 (10)

here q = p
n , gpK(z) is the Stieltjes transform in random

matrix theory and the complex number zi is set to be zi =
λi − ip−1/2.

Together with (6), (9) and (10), one obtains a complete

procedure for the optimal rotational invariant estimator of
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the covariance in high dimensions. It is rather simple and

works perfectly when the sample size n is larger than the

number of variables p.

2) The case of n < p: In the case of n < p, the method

of eigenvalues clipping is used to correct the sample eigen-

values. This method is different to the rotational invariant

estimator and is an intuitive application of the Marchenko-

Pastur law in random matrix theory.

Consider an n×p random matrix R whose elements come

from an independent standard Gaussian distribution. The

Marchenko-Pastur law describes the asymptotic behavior of

the eigenvalues of the p × p Wishart matrix W = RTR
when both n and p tend to infinity [10]. For q = p

n ∈ (0,∞),
the largest eigenvalue λ+ of W converges in probability to

(1 +
√
q)2.

In the eigenvalues clipping method, all its eigenvalues

beyond the largest expected eigenvalue λ+ are interpreted

as signal while the others are noise. To infer the covariance

matrix Σ from the sample covariance matrix K, we first

decompose the matrix K and keep eigenvectors unchanged.

Then apply the following scheme to correct the eigenvalues

Ξclip =

p∑
i=1

ξi uiu
†
i , ξi =

{
λi, if λi ≥ (1 +

√
q)2

λ̄, otherwise

(11)

here λ̄ is set to be a constant such that the trace of Ξclip is

equal to that of K [11].

This eigenvalues clipping method for covariance estima-

tion has also been found in a number of applications such

as gas identification and immunogen design etc [12], [13].

B. Random matrix regularized discriminant analysis (RMR-
DA) algorithm

Combined the linear discriminant analysis with the con-

sistent covariance estimator given above, we have the regu-

larized linear discriminant classifier based on random matrix

theory. The pseudocode for our algorithm are shown in

Algorithm 1.

IV. ANALYSIS OF THE SYNTHETIC DATA

In this section, we use the synthetic data to compare

the classification performance of our proposed method with

other existing methods including DLDA [1], MDMP [14]

and smDLDA [15]. We will consider the simulated da-

ta generated from three multivariate normal distributions:

N (μ1,Σ), N (μ2,Σ) and N (μ3,Σ). And the mean value

of the 1st class is set to be μ1 = 0, while for μ2 its first 100

values are set to 0.5 and the rest are 0. For the 3rd class,

its mean value is μ3 = −μ2. The covariance matrix Σ is

constructed as the block diagonal matrix and this covariance

model has been widely used to mimic the real world data sets

[16]. The (i, j)th entry in each block matrix is σij = ρ|i−j|.
Without loss of generality, we will set ρ = 0.1, 0.3, 0.6 and

0.8, respectively. The number of variables is set to p = 1000.

Algorithm 1 Random matrix regularized discriminant anal-

ysis (RMRDA)

Input: The training data Xtrain and the test data Xtest

Output: The average correct classification rate(ACCR)

1: Divide the labelled samples in Xtrain to K groups

2: for k = 1 : K do
3: Compute μk and πk in (4)

4: end for
5: Compute the sample covariance matrix Σ in (4)

6: if n ≥ p then
7: Estimate Σ using rotational invariant estimator in

subsection III-A1

8: else
9: Estimate Σ using eigenvalues clipping method in

subsection III-A2

10: end if
11: for each data vector x in Xtest do
12: for k = 1 : K do
13: Compute the discriminant function in (4)

14: end for
15: Classify x into the k-th class according to (4)

16: end for
17: Compute the average correct classification rate

18: return

Table I
ACCR FOR DIFFERENT ALGORITHMS (n = 1200, p = 1000)

Methods ρ = 0.1 ρ = 0.3 ρ = 0.6 ρ = 0.8
LDA 0.776 0.790 0.887 0.972

DLDA 0.979 0.972 0.934 0.824
MDMP 0.922 0.896 0.825 0.705

smDLDA 0.987 0.978 0.941 0.837
RMRDA 0.984 0.978 0.993 0.999

Table II
ACCR FOR DIFFERENT ALGORITHMS (n = 900, p = 1000)

Methods ρ = 0.1 ρ = 0.3 ρ = 0.6 ρ = 0.8
LDA 0.361 0.293 0.312 0.328

DLDA 0.980 0.974 0.917 0.823
MDMP 0.876 0.881 0.784 0.653

smDLDA 0.985 0.981 0.933 0.849
RMRDA 0.979 0.977 0.944 0.966

Each of the three classes has the same number of training

samples nk. We also generate additional 1200 samples as

test dataset. The average correct classification rate (ACCR)

for each algorithm is obtained by averaging over 100 runs

and the standard deviation is also calculated.

The average correct classification rates for different set-

tings are shown in Tables I and II. It can be seen from

Tables I and II that our algorithm works better than most

of the competitors and is only worse than smDLDA in few

cases. When the correlations between the variables become

stronger, our algorithm is superior to other classifiers.
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Table III
SUMMARY OF TRAINING AND TESTING DATASETS

Dataset Class Dimension Training set Testing set
pix 10 240 260 600
fac 10 216 260 600

Table IV
ACCR FOR THE MFEAT DATASETS

Dataset LDA DLDA MDMP smDLDA RMRDA
pix 0.402 0.918 0.940 0.918 0.932
fac 0.071 0.887 0.884 0.887 0.951

V. ANALYSIS OF REAL WORLD DATA SETS

The Multiple Feature(Mfeat) dataset is a multi-class

dataset [17], which consists of features of handwritten

numerals (from 0 to 9). The dataset includes six different

feature sets of the same data, such as Fourier coefficients

of the character shapes (fou), profile correlations (fac),

pixel averages (pix), etc. We have chosen the fac and pix

feature sets in our experiments. The sample size n and

the dimension p of the training and testing datasets are

summarized in Table III.

The classification results for the handwritten digit dataset

are presented in Table IV. We can see that the classification

accuracy of MDMP slightly exceeds that of RMRDA on

pix dataset, but RMRDA still outperform other competitors.

For the fac dataset, RMRDA shows the best classification

performance and maintains high classification accuracy.

VI. CONCLUSION

Linear discriminant analysis is a widely used method

for classification. However, it may fail when the number

of the features is close to or larger than the sample size.

We propose a regularized discriminant analysis method

based on random matrix theory. It can handle the high-

dimensional data sets, regardless of the relative magnitudes

of n and p. Compared with other popular classifiers, it shows

competitive and satisfying performance when evaluated on

both the synthetic data sets and the real world data sets.

The regularization process can further extend to quadratic

discriminant analysis after very slight modification to deal

with datasets in high dimensions.
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