
An Improved Differential Evolution Task Scheduling Algorithm Based on Cloud
Computing

Li Jingmei ,Liu Jia ,Wang Jiaxiang
College of computer Science and Technology

Harbin Engineering University
Harbin, China

e-mail: liujia4652@163.com

Abstract—It is a key issue to handle many tasks efficiently in
cloud computing at low cost. For the cloud computing
scheduling problem, to efficiently and reasonably assign a
large number of tasks submitted by users to cloud
computing resources, a task scheduling algorithm (IDE)
based on improved differential evolution is proposed to
consider both task completion time and cost dual objectives.
The algorithm introduces an immune operator into the
traditional differential evolution algorithm. According to the
vaccination probability, the population is vaccinated during
the iterative process to speed up the convergence of the
algorithm. Introducing the judgment mechanism on the
selection strategy can shorten the running time of the
algorithm and effectively improve the shortcomings of the
standard differential evolution algorithm with slow
convergence speed. The original fixed scaling factor F
becomes adaptive, which helps to increase the diversity of
the population. The simulation experiment of the proposed
algorithm is performed on the cloud computing platform
CloudSim. Comparing the IDE algorithm with the
traditional differential evolution algorithm, genetic
algorithm and Min-Min algorithm, the results show that IDE
algorithm task completion time is short, which improves the
utilization of cloud computing resource pools, and the cost of
computing resources in a similar period of time is low.

Keywords-cloud computing; task scheduling; differential
evolution; vaccination

I. INTRODUCTION

The concept of cloud computing has become a research
hotspot since its introduction. As an emerging technology,
cloud computing can be regarded as the development of
distributed computing, parallel computing, and grid
computing, and is realized in the commercial field. In
order to meet the needs of users, we can provide high-
performance, stable computing and storage-related
services for users. Some key technologies in cloud
computing have emerged.

The core of cloud computing is the virtual resource
pool, including high-performance processors and stable
storage structures. The existing cloud computing model
framework is commonly used in Google's cloud computing
platform and cloud computing network applications, IBM's
"Blue Cloud" platform products and Amazon's elastic
computing cloud [1].Although these platforms can meet
the basic needs of a large number of users, the efficient
processing of massive cloud tasks is still the key and
difficult point in cloud computing. At present, in order to

meet the needs of a large number of users, taking into
account the time and cost of the user to submit the task, the
researchers proposed a variety of cloud computing task
scheduling algorithms, but these algorithms are still not
efficient enough when dealing with massive tasks [2,3,4].
Therefore, it is of great significance to optimize the
existing cloud computing task scheduling algorithm.

Based on the above background, in order to make
resource utilization higher in cloud computing, this paper
proposes a cloud computing task scheduling algorithm
(IDE) based on differential evolution algorithm which
considers both time and cost. In the initial stage of the
evolution of the algorithm, immune operators were added,
and the traditional differential evolution algorithm was
improved by the vaccination method. At the same time, the
adaptive scaling factor F was designed to solve the
problems of premature convergence, slow convergence,
and difficulty of parameter setting of traditional
differential evolution algorithms. The main goal is to
shorten the task completion time as much as possible, and
to minimize the cost of the computing node while
satisfying the needs of the majority of users, so as to
achieve dual goals of time and cost optimization. At the
same time, through the experimental simulation, the
proposed algorithm is compared with the basic differential
evolution algorithm and other scheduling algorithms to
verify the effectiveness of the proposed algorithm.

II. PROBLEM DESCRIPTION OF CLOUD COMPUTING
TASK SCHEDULING

Nowadays, most cloud computing platforms use the
Map/Reduce programming model proposed by Google to
perform parallel computing and processing on large-scale
data sets. Map/Reduce is mainly divided into two phases.
First, the received large-scale data submitted by the user is
divided into many small sub-tasks, and these sub-tasks are
then allocated to the resource set on the cloud server
through the corresponding scheduling method. This stage
of splitting is called the Map stage. After the computing
resources have processed these sub-tasks and then
integrated through the Reduce stage, the final result after
processing is fed back to the user [5]. By dividing the task
by such a model and simplifying the complex problems by
means of synchronous parallel computing, the execution
efficiency of tasks is improved [6,7,8].

The cloud computing platform mainly has two levels.
The basic cloud computing platform model is shown in
Figure 1. The requirements submitted by users classify

30

2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science

978-1-5386-7445-1/18/$31.00 ©2018 IEEE
DOI 10.1109/DCABES.2018.00018

tasks through the Map phase. The first level is to assign n
tasks efficiently to m computing resources in a resource
pool through a reasonable algorithm or strategy, and
perform tasks on computing resources in a certain order of
submission [9]. The second level of scheduling is the
mapping between computing resources and physical
machine entities. At this level, the main task accomplished
is to optimize the virtual resource pool available to the
cloud platform through the task scheduling strategy after
the splitting of small child tasks. This article focuses on the
scheduling problem at the first level.

Cloud task

T1 T2 Tn

Requirement

VM1 VM2 VMm

Scheduling algorithm

Task assignment

Scheduling
m

odule

Cloud task
Virtual resource

pool

Host1 Host2 Hostj Physical
m

achine

Level one
Level tw

o

Fig 1 Cloud computing task scheduling model
Cloud computing needs to provide many users with

different services at the same time. It needs to consider the
response time of each user and also consider the cost of
providing services for different users [10]. The existing
algorithms only consider the shortest possible execution
time of the task, and do not take into account the fact that
some computing resource processing problems have a
short time, but the cost is very high. Therefore, this paper
proposes a task scheduling algorithm that reduces the task
completion time while reducing the service cost of core
computing resources.

This paper makes the following assumptions for cloud
computing task scheduling:

(1) The completion time of a task on a computing
resource node is known, the number of tasks is N, and the
number of computing resources is M, then a matrix of
N*M can be used to represent the completion time of a
task on each computing resource, and is recorded as a time
cost matrix.

(2) The cost required by each computing resource node
per unit time is known. Then, an N*M matrix can be used
to represent the cost per unit of time required for the task
to execute on each computing resource, which is denoted
as the cost overhead matrix.

(3) The number of cloud computing tasks is much
larger than the number of computing resources, and the
network delay and transmission time are ignored.

III. IMPROVED DIFFERENTIAL EVOLUTION TASK
SCHEDULING ALGORITHM

A. Basic Differential Evolution Algorithm
Differential Evolution (DE) was first proposed by

Storn and Price in 1995. It is mainly used to solve the real
optimization problem [11]. It belongs to a group-based
adaptive heuristic global search algorithm. Since DE's
mutation operation is relatively simple, it can be widely
applied in many fields such as data mining, neural network,
and electromagnetics based on the rational modification of
DE mapping with solving problems. On the discrete task
scheduling problems such as cloud computing, the
necessary improvements can also be effectively applied.

The core idea of DE is to perform a difference vector
between two randomly generated populations, then
generate a new intermediate generation after reasonable
processing, and then use the greedy algorithm to select the
best solution, and then iterate until the algorithm converges
[12,13]. When the traditional DE algorithm cross-mutates,
it is very likely that the global searching ability is poor
because of the selection of the mutation operator. At the
same time, the fine individuals produced by the new
mutations may be exchanged during the crossover process,
increasing the amount of calculations and iterations. To
solve these drawbacks, this paper proposes an improved
differential evolution algorithm that introduces immune
operators to improve the convergence speed of the
algorithm.

The general flow of the DE scheduling algorithm is as
follows:

Step 1: Determine the parameters and variables in the
algorithm based on the size of the problem.

Step 2: Randomly generate populations and initialize
corresponding parameters.

Step 3: Calculate the initial population fitness value
based on the goal of the problem.

Step 4: Determine if the resulting value satisfies the set
termination condition or the maximum number of
iterations. If yes, the algorithm is terminated, and
conversely, execution continues.

Step 5: Individuals of the population undergo
mutations and crossovers to produce intermediate
populations.

Step 6: Calculate the fitness value of the middle
population.

Step 7: According to the selection strategy, individuals
satisfying conditions are selected among the intermediate
population and the original population.

Step 8: Add one iteration, skip to step 4.

B. Population Coding
The traditional coding method in cloud computing task

scheduling problem is based on the coding of computing
resources. Each computing resource has a task sequence
that needs to be executed.For example, there are 7 subtasks
(N1, N2, N3, N4, N5, N6, N7) and 3 available resources
(M1, M2, M3). The corresponding individual codes are [1,
3, 7, 0, 2, 5, 6, 0, 4] means that the N1, N3, and N7 tasks
run on M1; N2, N5, and N6 tasks run on M2; N4 tasks run
on M3; 0 indicates the identifier of the interval between
computing resources symbol.

When using differential evolution algorithm for cross-
mutation, this coding method has many disadvantages. For

31

example, when performing mathematical operations, it
may exceed a reasonable range value. At the same time, it
needs to determine whether it is an interval character,
which increases the difficulty of parameter setting.
Therefore, taking the above hypothesis as an example, the
coding scheme corresponding to the encoding method used
in this paper is [1,2,1,3,2,2,1], where the first one indicates
that task N1 runs on M1; second A bit of 2 indicates that
task N2 is running on M2; and so on, the seventh bit
indicates that task N7 is running on M1. The
corresponding decoding is: M1 runs on N1, N3, N7; M2
runs on N2, N5, N6; M3 runs on N4. This kind of coding
method does not need to consider too many parameters in
the cross-mutation. If there is a situation beyond a
reasonable range, it can be rationalized by a unified
method, which reduces the amount of calculation and
makes it easier to obtain decoding results.

C. Initial Population Generation
Taking the initial population size as S, the number of

tasks after all the tasks submitted by the user are properly
handled is N, and the number of computing resources in
the cloud computing is M, and the corresponding coding
description according to the population initialization is: S
sequences are randomly generated. Each code sequence is
N in length, the range of each parameter in the sequence is
[1, M].

D. Fitness Value Function
In order to make the improved algorithm suitable for

cloud computing task scheduling problem, it is necessary
to model the problem and design the corresponding fitness
value function. The general algorithm only considers the
execution time when it comes to cloud computing
scheduling problems, but often ignores the cost
requirements. Therefore, according to the characteristics of
the cloud computing task scheduling problem and the
needs of the majority of users, it is proposed that this
algorithm is set to meet the dual-objective fitness value
function of the calculation cost and task scheduling
completion time.

According to the known time cost matrix, the
completion time of each virtual resource execution task
can be calculated, the set of cloud task assigned to the
computing resource i is defined as Ri, and the task
completion time of the computing resource is , then the
completion time of all tasks is AT ,which is the maximum
value of the task completion time for each computing
resource, as shown in (1).

� �maxAT ET i� (1)
Define the fitness value function that only considers

the task completion time, as shown in (2).
timeF AT� (2)

According to the cost-cost matrix, the cost of a task
spent on different computing resources per unit time can
be known as , and the completion time of the task on the
computing resource is known, then the total cost of the
task can be obtained by (3).

1
C *

N

i
A ET i CN i

�

� � (3)

Because it is necessary to consider both time and cost
goals, the cost function and time function vary greatly, and

the difference may not be in the same order of magnitude.
Therefore, the total cost of the task completion AC needs
to be reasonably adjusted to FAC, as shown in (4).

lg()
10

AC
AT

ACFAC
� �
� �� 	

� (4)

It is intended to define a fitness value function that
only considers costs, as shown in (5).

cos tF FAC� (5)
Therefore, (2) and (5) define the comprehensive fitness

value function that considers the task completion time and
cost, as shown in (6).

costime tFitness a F b F�
 �
 (6)
In equation (6), a and b are used as the adjustment

parameters, ranging from [0,1], and a+b=1, which is used
to control and adjust the consideration of task execution
time and cost. There are two extreme special values. When
a=1 and b=0, the comprehensive fitness function becomes
the fitness function that only considers time. When a=0
and b=1, the comprehensive fitness function becomes the
fitness function that only considers the cost.

E. Mutation Operation
The basic operation of generating descendants using

differential evolution algorithms is mutation and crossover.
There are multiple mutation strategies in the differential
evolution algorithm. The general form of the mutation
strategy chosen in this paper is represented as DE/x/y/z,
and DE represents the differential evolution algorithm. x
denotes whether the reference individuals participating in
the variation process and the vector recombination are
randomly generated individuals or optimal individuals in
the current population; y indicates the number of
difference vectors involved in the reorganization; z
indicates whether the reorganization adopts a binomial
reorganization method or an index reorganization method.
The variation used in this paper is shown in (7), namely
DE/rand/1/bin.

1 2 3()iV N F N N� �
 � (7)
Among them, N1~N3 represent any randomly

generated individuals in the current parent population. N1
is a randomly generated reference entity and F is the
scaling factor in the formula, which ranges from [0, 2]. By
formula (7), it can be known that a smaller F is favorable
for accelerating the convergence speed of the algorithm,
and a larger F is favorable for a global search, so that the
algorithm jumps out of the local optimum to prevent over-
exploitation. Therefore, this paper proposes to set the
adaptive F, as shown in (8).

1
2
11
2

Cg Mg Cg
Mg

F
Cg Mg Cg
Mg

 ���� �
� � �
��

 (8)

Cg represents the current population iteration number,
and Mg represents the maximum number of iterations of
the algorithm.

Unreasonable values will be generated during the
running of the algorithm. Therefore, it is necessary to
rationalize the unreasonable value. In this paper, (9) is
used to rationalize the unreasonable value generated by the
calculation.

32

mod -1 1i iV V M� � � �� � (9)
After the intermediate population generated by the

mutation operation, the disadvantage of slow convergence
rate of the differential evolution algorithm is carried out
according to Section 3.6 to increase the number of
excellent individuals in the population. According to the
fitness value, the middle population is selected from the
vaccinated individuals and the mutated individuals, and the
next generation population is selected according to the
selection strategy.

F. Introducing Immune Operators
Immune algorithm is an algorithm that simulates

human immunity and evolution mechanism. The
vaccination mechanism of immune algorithm can
effectively improve the convergence speed of the
algorithm without affecting the convergence of the
algorithm [14]. Therefore, reasonable addition of immune
algorithm for vaccination can optimize the convergence
speed of the original algorithm. Aiming at the
disadvantage of the slow convergence rate of differential
evolution algorithm, the immunization algorithm is
introduced into the vaccination process to improve the
convergence speed of the task scheduling algorithm in this
paper. The extraction of superior individuals is performed
at the initial population to generate vaccine pool sets.

1) Extracting Vaccine
The vaccine pool is a collection of pairs of cloud tasks

and computing resources. The number of pairs is
determined in advance by the characteristics of cloud tasks
and computing resources. A reasonable threshold is set in
advance, and the cloud task-calculation resource pair
whose task completion time is less than the set threshold is
extracted and added to the vaccine library. For a better
understanding of the following give a simple example.
When considering the completion time of the cloud task,
the time consumption matrix for the scheduling of the five
tasks onto the three computing resources may be as shown
in FIG. 2. The rows of the matrix represent the cloud tasks
and the columns represent the computing resources.

12 3 2
1 6 3
5 8 11

13 2 4
6 4 11

� �
� �
� �
� �
� �
� �
� �� 	

Fig 2 Time Consumption Matrix
According to the time cost matrix, the preset vaccine

pool can be {(2,1), (4,2), (1,3)}.Then X=[3,1,2,2,2] can be
updated for an individual in the population after
X=[1,3,2,1,2] vaccination. Similarly, according to the cost
consumption matrix, the corresponding number of cloud
task-computing resources pairs can be extracted as a
vaccine library, and this will not be enumerated
again.Positioning Figures and Tables: Place figures and
tables at the top and bottom of columns. Avoid placing
them in the middle of columns. Large figures and tables
may span across both columns. Figure captions should be
below the figures; table heads should appear above the
tables. Insert figures and tables after they are cited in the
text. Use the abbreviation “Fig. 1”, even at the beginning
of a sentence.

2) Vaccination

Although the introduction of the vaccination
mechanism in the differential evolution algorithm can
improve the convergence rate of the algorithm to a certain
extent, if the vaccination is improper, the algorithm will
lead to a local optimum when it is over-exploited.
Therefore, in order to introduce the immune operator
reasonably, it is necessary to define the inoculation
probability formula, as shown in (10).

- [0,]CgP e Cg Mg� � (10)
The probability of inoculation was calculated from the

number of iterations of the algorithm, and the population
was vaccinated with probability. Since the extracted
vaccine is a simple pair, it does not change the diversity of
the population on a large scale. Reasonable use of vaccine
can effectively improve the convergence speed of the
algorithm, and effectively improve the algorithm's
balanced mining and search capabilities. At the end of the
iteration, the individual's fitness value is examined. When
the number of iterations increases to a certain value, the
probability of vaccination is very small. When the
population is detected after the population iteration is small,
the vaccination can be selected.

G. Selecting a Strategy
Most of the traditional differential evolution algorithm

selection strategy is to choose greedy selection strategy,
that is, individuals with better fitness values are selected in
the middle population and the original population after the
mutation crossover, and the good individuals are retained
to form a new parent to enter the next iteration. Thus
reciprocating the population continuously evolves towards
a better target fitness value.

However, there are two shortcomings in the above
selection strategy. First, the survival of the fittest during
the iterative process is to select the best iteration to enter
the new one at a time, which results in a poor global search
capability leading to a local optimum. Second, good
individuals generated after mutation operations may be
destroyed by crossover operations and become individuals
with poor fitness, which increases the number of iterations.
In view of the above two insufficiency, in order to improve
the search capability, we choose to use roulette to select
and enter the next generation, which can appropriately
improve the overall search scope and increase the diversity
of the population. While improving the selection strategy,
a judgment mechanism is added after the vaccination
operation. That is, after the vaccination operation, it is
judged whether the new individual's fitness value is better
than the original individual. If the evolution of the
population directly into the next generation is better than
that of the original individual, and the fitness value of the
original individual is not good, then the original algorithm
is used for cross-operation and then the roulette strategy is
used to select the next generation population.

H. The overall process of the algorithm
The flow of the improved differential evolution task

scheduling algorithm that introduces immune operators is:
Step 1: According to the cloud computing problem

model, initialize the parameters, make the current iteration
number 0, set the maximum number of iterations and other
variables.

33

Step 2: Randomly generate populations based on the
set number of cloud tasks and resources.

Step 3: Calculate the fitness value of the initial
population based on the dual-target demand set by the
problem and extract the vaccine pool.

Step 4: Determine if the result meets the set
termination condition or the maximum number of
iterations. If yes, the algorithm is terminated, and
conversely, execution continues.

Step 5: Randomly select individuals in the population
to perform mutation operations to generate the mutated
individual Vi, vaccinate Vi and select excellent individuals
as intermediate populations. Determine whether the middle
population is better than the current parent population. If
yes, skip step 6; otherwise, perform the sequence.

Step 6: Crossing the current parent population and the
intermediate population according to the crossover
probability generates a new population.

Step 7: Select the next generation population according
to the corresponding selection strategy.

Step 8: Add one iteration, skip to step 4.
The specific flow chart is shown in Figure 3.

Star

Randomly generate
populations

Calculate the fitness value of
the initial population

Extract the vaccine pool

Satisfy termination
conditions?

Crossing generates new
population

Mutation operations

Output optimal solution

Yes

End

Satisfy the crossIng
condition?

Selection strategy

Yes

No

vaccinate

Select the next generation
population

Add one iteration

No

Fig 3 Algorithm Flowchart

IV. EXPERIMENTS AND RESULTS

In order to better evaluate and analyze the IDE
proposed in this paper, cloud simulation platform
CloudSim was used for simulation. CloudSim is the cloud
computing simulation software announced by the Grid Lab
and Gridbus project at the University of Melbourne,
Australia. CloudSim can provide virtualization engines to
establish and manage the virtualization services required
by cloud computing. CloudSim's component tools are easy
to use for open source architectures and meet cloud
computing task scheduling requirements.

In practical problems, the tasks of cloud computing are
often massive. When the number of processing tasks
increases, the performance of the algorithm will be
affected. According to the actual characteristics of cloud
computing’s computing resources, it is necessary to
consider both time and cost. Therefore, this paper designs
two sets of experiments. The first set of experiments keeps
the number of computing resources constant and selects
multiple sets of cloud tasks. When evaluating the number

of computing resources is constant, as the cloud task grows,
the performance of the differential evolution algorithm and
other algorithms is improved. The experimental
comparison algorithm used traditional differential
evolution algorithm (DE), genetic algorithm (GA) [15] and
Min-Min [16] algorithm. The second set of experiments
keeps the number of cloud tasks and computing resources
unchanged, and sets multiple sets of different a and b
parameters. Evaluate the effectiveness of the differential
evolution algorithm when the time and cost are taken into
account while the cloud tasks and computing resources are
unchanged. The experimental comparison uses parameter
settings that only consider the time and only consider the
cost.

Initial conditions of experiment 1 algorithm: Randomly
generate six groups of cloud tasks with different numbers
100, 200, 400, 600, 800, and 1000. Since the computing
resources have different processing time for different tasks,
the latter task needs to include the previous tasks. The
calculation resource M is set to 10, and when comparing
the algorithms, the task completion time and the task total
cost are respectively considered.

Fig 4 Comparison of task completion time

Fig 5 Comparison of task completion cost
Analysis of experimental results: It can be seen from

Figure 4 and Figure 5. When the number of tasks is small,
the performance of the algorithm is not much different.
However, it can be seen that when the number of tasks is
large, the IDE algorithm is significantly shorter than other
algorithms and the cost is low. It shows that the IDE
algorithm proposed in this paper has good performance in
handling massive cloud tasks.

Initial conditions of experiment 2 algorithm: Randomly
generate 100 tasks, computing resource M is set to 10, and
the maximum number of iterations is set to 100. Set (a = 1,

g

34

b = 0); (a = 0, b = 1); (a = 0.5, b = 0.5) three different pairs
a, b values.

Fig 6 Task Completion Time

Fig 7 Total Task Costs
Analysis of experimental results: It can be seen from

Fig. 6 and Fig. 7 that the performance of the algorithm is
conflicting when considering only time and only cost. The
IDE algorithm proposed in this paper, which considers
both time and cost, is suitable for a wide range of users
who balance time and cost. When dealing with practical
problems, the IDE algorithm can adjust the values of
parameters a, b to meet the needs of different users.

V. CONCLUSION

According to the characteristics of cloud computing
task scheduling problem, taking into account the dual goals
of time and cost, a dual-objective improved differential
evolution algorithm is proposed.A simple coding method
is used to model the cloud computing task scheduling, and
a judgment mechanism is introduced before the crossover
operation. At the same time, the immune operator is added
after the mutation crossover, which accelerates the
convergence speed of the algorithm better and adopts an
adaptive scaling factor F. Increased population diversity
prevents the algorithm from falling into a local optimal
solution. Through simulation experiments, the proposed
algorithm is compared with the traditional cloud
computing task scheduling algorithm. The algorithm
proposed in this paper has a faster convergence speed and
lower cost. However, there are still some shortcomings in
the research of this algorithm for cloud computing task
scheduling. The next step will be to consider that during
the operation of the algorithm, network delays and
interruptions need to be added to the task memory function
in order to better meet the cloud computing task
scheduling requirements.

ACKNOWLEDGMENT

This work was supported by National Key Research
and Development Plan of China under Grant
No.2016YFB0801004.

REFERENCES

[1] Armbrust, Michael, Fox, et al. Above the Clouds: A Berkeley
View of Cloud Computing[J]. Eecs Department University of
California Berkeley, 2009, 53(4):50-58.

[2] Abdullahi M, Ngadi M A, Abdulhamid S M. Symbiotic Organism
Search optimization based task scheduling in cloud computing
environment[J]. Future Generation Computer Systems, 2016,
56:640-650.

[3] Dutta D, Joshi R C. A genetic: algorithm approach to cost-based
multi-QoS job scheduling in cloud computing environment[C]//
International Conference & Workshop on Emerging Trends in
Technology. ACM, 2011:422-427.

[4] Razaque A, Vennapusa N R, Soni N, et al. Task scheduling in
Cloud computing[C]// IEEE Long Island Systems, Applications
and Technology Conference. IEEE, 2016:1-5.

[5] Chang Y J, Chen C C, Chen C L, et al. A de novo next generation
genomic sequence assembler based on string graph and
MapReduce cloud computing framework.[J]. Bmc Genomics, 2012,
13 Suppl 7(S7):S28.

[6] Panda S K, Jana P K. Efficient task scheduling algorithms for
heterogeneous multi-cloud environment[J]. The Journal of
Supercomputing, 2015, 71(4):1505-1533.

[7] Lin R, Li Q. Task scheduling algorithm based on Pre-allocation
strategy in cloud computing[C]// IEEE International Conference on
Cloud Computing and Big Data Analysis. IEEE, 2016:227-232.

[8] Singh S, Chana I. QRSF: QoS-aware resource scheduling
framework in cloud computing[J]. Journal of Supercomputing,
2015, 71(1):241-292.

[9] Calheiros R N, Ranjan R, Beloglazov A, et al. CloudSim: a toolkit
for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms, Software:
Practice and Experience[J]. Software Practice & Experience, 2010,
41(1):23–50.

[10] Jiehui J U, Bao W Z, Wang Z Y, et al. Research for the Task
Scheduling Algorithm Optimization based on Hybrid PSO and
ACO for Cloud Computing[J]. International Journal of Grid &
Distributed Computing, 2014, 7(25):217-218.

[11] Price K, Price K. Differential Evolution – A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces[M].
Kluwer Academic Publishers, 1997.

[12] Ge J, He Q, Fang Y. Cloud computing task scheduling strategy
based on improved differential evolution algorithm[C]//
International Conference on Computer-aided Design. AIP
Publishing LLC, 2017:1-35.

[13] Zheng Z, Xie K, He S, et al. A Multi-objective Optimization
Scheduling Method Based on the Improved Differential Evolution
Algorithm in Cloud Computing[C]// International Conference on
Cloud Computing and Security. Springer, Cham, 2017:226-238.

[14] Jiao L, Wang L. A novel genetic algorithm based on immunity[J].
Systems Man & Cybernetics Part A Systems & Humans IEEE
Transactions on, 2000, 30(5):552-561.

[15] Goldberg D E. Genetic Algorithm in Search Optimization and
Machine Learning[J]. Addison Wesley, 1989, xiii(7):2104–2116.

[16] Singh S, Singh V. A Genetic based Improved Load Balanced Min-
Min Task Scheduling Algorithm for Load Balancing in Cloud
Computing[C]// International Conference on Computational
Intelligence and Communication Networks. 2016.

35

