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Abstract—A novel cooperative RDPSO algorithm based on 
entire search history decision (CRDPSO) is reported. The 
proposed algorithm employs a binary space partitioning tree 
structure to memorize the positions and the fitness values of 
the evaluated solution. Benefiting from the space partitioning 
scheme, a fast fitness function approximation using the 
archive is obtained. The approximation is used to improve the 
mutation strategy in CRDPSO. The resultant mutation is 
adaptive and parameter-less. Meanwhile, the cooperation 
mechanism enhanced search ability helps to prevent 
premature convergence and improve optimization. The 
proposed algorithm is examined on 8 standard benchmark 
functions including multimodal and unimodal functions. The 
results show that CRDPSO outperforms four traditional 
algorithms.  

Keywords: random drift particle swarm optimization; 
cooperative evolution; search history; adaptive mutate; 

I. INTRODUCTION 

Particle Swarm Optimization (PSO) algorithm is an 
evolutionary optimization technique originally introduced 
by Kennedy and Eberhart in 1995[1]. Instead of using 
evolutionary operations, such as crossover and mutation, 
in other evolutionary algorithms, PSO relies on the 
exchange of information between individuals, which are 
volume-less particles of the population called swarm. Each 
particle flies in search space with a velocity, which is 
dynamically adjusted according to its own flying 
experience and its companions’ flying experience. 

Since 1995, many attempts have been made to improve 
the performance of the PSO. As far as the PSO itself 
concerned, however, it is not a global optimization 
algorithm, as has been demonstrated by F. van den 
Bergh[2]. To overcome this flaw, Jun Sun et al has 
proposed a variant of the PSO algorithm, called random 
drift particle swarm optimization (RDPSO)[3], which was 
inspired by free electron model of metal conductors in an 
external electric field[4]. It has been shown that RDPSO 
achieve the goal of effectively estimating the parameters of 
complex biochemical dynamic systems and obtain the 
solution of better quality than most of the global 
optimization method used for solution to the inverse 
problems[3]. Like other evolutionary algorithm, PSO as 
well as RDPSO, confront the problem of premature 

convergence and stagnate at local optimum, which results 
in great performance loss and sub-optimal solutions. In 
order to further improve RDPSO’s performance on 
complex optimization problems, it is important to increase 
the diversity of particles. A novel cooperative random drift 
particle swarm optimization algorithm based on entire 
search history (CRDPSO) is proposed. 

Several search algorithms[5-7] employ search history 
in the form of memory to adaptively guide the search 
strategies. However, they only use partial search histories 
– that is, only part of the information gained from the 
search is retained and the rest are discarded. Search history, 
including the performed operations, the positions of the 
evaluated solutions and the fitness values of the solutions, 
are valuable information to enhance the performance of a 
swarm intelligent algorithm (SI). Intuitively, it can be used 
to maintain diversity. It can also guide the search direction 
or suggest promising search regions of interest. In addition, 
when the same optimum reappears in the search history, it 
can warn that the search may have trapped in a local 
optimum. The non-revisiting genetic algorithm (cNrGA) is 
proposed by Yuen and Chow[8]. It is originally applied to 
genetic algorithm (GA) to prevent from solution re-
evaluation. Meanwhile, the scheme also acts as a 
parameter-less mutation operation. The cNrGA is found to 
be more robust than GA. However, the adaptive mutation 
of cNrGA could not make gene fully explore due to sub-
regions limitations. Moreover, because of the complexity 
of the GA algorithm, cNrGA has complex computation and 
slow convergence speed. Since all updated positions in 
CRDPSO are guaranteed to be novel (they are non-
revisited before), faster convergence speed is expected. 
Due to the nature of the non-revisiting scheme, the non-
revisited position self-switch local search and global 
search. 

The rest part of the paper is organized as follows. 
Section 2 introduces the RDPSO. Section 3 describes the 
details of CRDPSO. Section 4 is dedicated to application 
over the benchmark function minimization. Section 5 
reports the simulation results where the experimental 
environment and the experimental results are elaborated 
and discussed. Finally, conclusions are given in Section 6. 
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II. RANDOM DRIFT PARTICLE SWARM OPTIMIZATION 

Trajectory analysis[9] demonstrated the fact that 
convergence of the PSO algorithm may be achieved if each 
particle converges to its local attractor ���. The particle’s 
directional movement toward is similar to the drift motion 
of an election in metal conductors in an external electric 
field. However, according to the free electron model [10], 
besides the directional motion caused by the electric field, 
the electron is also in thermal motion which appears to be 
random movement. The overall effect of the electron’s 
movement is that the electron careens towards the location 
of the minimum potential energy. Therefore it is obvious 
that the movement of the electron is very similar to the 
process of finding the minimum solution of a minimization 
problem, if the position of the electron is considered as a 
candidate solution and the potential energy function as the 
objective function of the problem. 

Inspired by the above facts, [3] assumes that the 
particle in PSO behaves like an electron moving in a metal 
conductor in an external electric field. Therefore the 
movement of the particle is the superposition of the 
thermal motion and the directional motion to ��� . 
Accordingly, the velocity of the particle can be represented 
by ������	 
 �������	 � �
�����	, where �������	 and �
�����	 
represents the velocities of the thermal motion and 
directional motion toward ��� ., respectively. Therefore, 
the velocity of the particle is determined by the 
combination of �������	  and�
�����	 . Next, an adaptive 
strategy is adopted to evaluate �����  by ����� 
 
����� ������ �,  where�� 
 ��	�� ����� � ���� is called mean best 
(mbest) position defined as the mean of the pbest 
positions of all the particles, i.e. ��� 
� 	��� ����� ��� � � � �����	 . Therefore a novel set of 
update equations for the particle is obtained in RDPSO:  
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where α  is called compression-expansion coefficient 
and  is called acceleration coefficient. The PSO with 
Equations (1) and (2) is named as random drift particle 
swarm optimization (RDPSO). 

III. COOPERATIVE RDPSO ALGORITHM BASED 

ON ENTIRE SEARCH HISTORY 

A. Entire search history scheme 

Definition 1: The Sub-region r of solution x  
Suppose x is a solution in the search space S, i.e. ! ", 

and S is partitioned into sub-region set �# 
$� %�  by a 
binary space portioning (BSP) tree T. The sub-region % !# is defined as the ‘the sub-region of x’ if  ! % and r is 
represented by a leaf node of T. 

The entire search history recorder scheme stores all 
visited solutions and its fitness [ei, f(ei)] by a tree-structure 

archive, namely BSP tree. During iterations, the search 
space is being partitioned into set of regions R. In the BSP 
tree, a node represents a region of search space. Suppose a 
parent node P has two child nodes m and n. The child nodes 
linearly partition the sub-region of P into two overlapped 
sub-regions. The corresponding partitioning cuts along the 
kth dimension where�& 
 '()*+ ,*�&� � -�&�,. In this 
way, each previous solution generated by the RDPSO is 
recorded in a node of the tree. In the whole solution process 
the BSP tree records all solutions in the search space and 
analyzes the current solution by evolutionary search 
history of prior solutions. Since the tree construction 
depends on the sequence of solution set, the BSP tree is a 
random tree and its topology is different from trial to trial. 

The node in the BSP tree linearly partition the adjacent 
sub-regions have certain overlap to each other, namely 
overlapped sub-regions. It creates a path for which particle 
could move from one sub-region to another with better 
fitness. The search for the overlapped sub-region r of a 
solution x is implemented as a tree node search. The search 
starts from examining the root node whilst r is initialized 
as the whole search space. Each time the search moves 
downwards, r is contracted along a specified direction until 
the search reaches leaf node. The sub-region contraction 
scheme guarantees that the resultant sub-region overlaps 
with all its adjacent sub-regions.  

Consider the fitness values of the evaluated solutions 
are also recorded in the memory archive by the BSP tree; 
this archive can also be regarded as the approximation ./� � of a fitness function f(x). If the sub region of an 
evaluated solution ei is ri, the fitness value of an unseen 
solution x inside the sub-region ri can be approximated as 
yi i.e. .� � 0 ./� � 
 1� 
 .�2��. ./� � is a step-wise 
function because of the fitness of all solutions in the sub-
region of a BSP tree node is approximated to the same 
value, i.e.,�./�+� 
 ./�3� 
 1� 
 .�2�� for all +� 3� 2� !%�. With a growing number of evaluated solutions and the 
solutions are recorded one by one, the approximation error 
of ./� � monotonically decreases. So the approximate 
process can be thought of as a simple incremental learning 
method of machine learning. 

B. An adaptive mutation mechanism 

Definition 2: Neighborhood of a sub-region 
The sub-region Y of node y is the neighborhood of the 

sub-region X of leaf node x if X456 
Every sub-region can be regarded as an optimum up 

to a certain neighborhood size, namely the number of 
neighbor points concerned. The neighborhood size points 
of a node decreases with its node depth as a result of the 
topology of the BSP tree. Therefor the neighborhood size 
is represented by the tree node depth difference. Suppose 
the sub-region Y of node y is the neighborhood of the sub-
region X of node x, the neighborhood size of Y related to X 
is defined as the depth difference of y and x denoted by l; 
X is estimated as an optimal sub-region if the fitness value 
of x is the smallest amongst all evaluated solutions in Y. 
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When l is chosen to be the depth of the BSP tree, it is 
assumed that the approximated fitness functions consists 
of only one optimum. All particles are enforced to 
approach to the best found optimum. If l equals to zero, 
every sub-region is regarded as a local optimum. Then the 
particles are randomly mutated within its sub-region. In 
order to make the approximated fitness function locally 
guide the search, l is chosen to be 2 because l should be 
slightly larger than zero but much smaller than depth of the 
BSP tree. 
Definition 3: Sub-region Distance 

Suppose X and Y are the sub-regions of nodes x and y 
respectively. The sub-region M of node m is the smallest 
sub-region which contains both X and Y, i.e. X,Y4M, then 
the sub-region distances from X to Y is defined as depth 
difference between x and m. 

After locating the optimal sub-regions of the 
approximated fitness function, the mutation direction of a 
sub-region X is defined as the direction pointing to its 
nearest optimal sub-region. Suppose N is the optimal sub-
region set in S. The sub-region Y4N is the nearest optimal 
sub-region of the sub-region X of node x if the distance 
from X to Y is the minimum amongst the distance from X 
to all optimal sub-regions, i.e. Y = argmin Distance(X, A). 

The nodes in sub-region mutation direction point to its 
nearest optimal neighborhood sub-region. In the adaptive 
mutation method, an individual x moves in the direction 
that the approximation fitness improvement of ./� � at x 
is locally maximal. This can be done by assigning the 
mutation direction v as the direction pointing to the nearest 
historical optimum y of x, i.e., v = y – x. As ./� � can be 
treated as a step function; its optimum in the form of an N-
dimensional sub-region rather than an N-dimensional point. 
Also, the topology of the BSP tree represents the 
adjacencies of the sub-regions amongst the steps. 
Therefore the procedure to find the nearest optimum of x 
is equivalent to find the nearest optimal sub-region for the 
sub-region of x in./� �. To balance the exploitative effect 
of this gradient descent like direction assignment, the 
mutation step size  is randomly selected in the interval (0, 
1), in which the mutant x’ of x is a linear combination of x 
and y, x’=x+�v= (1-�) x+�y. The mutation step size is 
randomly assigned within an adaptively adjusted range 
based on the search history, while its search direction is 
conducted by the approximated fitness function from the 
BSP tree. Thus the adaptive mutation mechanism is an 
adaptive, parameter-less and guided mutation operator. 
Moreover, it naturally avoids generating any out-of-bound 
particles. This is superior to some other methods that may 
generated out-of-bound solutions and need to define an 
extra repair operator to change the solutions back to valid 
ones. 

C. Cooperative Evolution 

For high-dimensional problems, search algorithms 
which include stochastic algorithms suffer from the "curse 
of dimensionality" which refers to the phenomenon of 

scaling problems. Every dimension of a particle will affect 
its overall fitness. Therefore, even if dimensions values of 
some particles lie very close to the corresponding 
dimensions of the globally optimal solution, the particles 
still get lower fitness. The importance of cooperation 
operation is that it enables "good" dimensions information 
within the particle swarm to be preserved, and can prevent 
potentially useful information from being unnecessarily 
discarded. By performing cooperation one dimension at a 
time, each dimension is able to be evaluated, respectively, 
and save the most useful information to accelerate 
convergence. The cooperative evolution can improve the 
algorithm performance in the high dimension 
problems[11]. 

D. Cooperative RDPSO algorithm based on entire 
search history 

Cooperative RDPSO algorithm based on entire search 
history is a kind of real coded evolutionary algorithm. The 
whole algorithm is mainly composed of four parts, namely 
population initialization, evolution, mutation and 
cooperative selection. CRDPSO algorithm focuses on 
enhancing adaptive mutation based on the evolution 
history and selecting the optimal particle through the 
dynamic coordination mechanism. Fig.1 summarizes the 
procedure of CRDPSO. Given a D-dimensional 
minimization problem F(.) with search space RD, the 
algorithm starts from initializing the current population of 
n particles P={p1,p2,…,pn}. Meanwhile, the BSP tree T is 
initialized to consist of the root node. Then the population 
is evaluated and its fitness is recorded by T. Each particle 
in P is adaptively mutate, i.e. �� 789:9;<===>1� . Afterwards each 
particle pi generates four particles {pi1,…,pi4 } by Eq.(1) to 
Eq.(2) and dynamic cooperative evolve with the 
corresponding mutant yi on each dimension, namely the ith 
particle dynamic collaborative evolutionary particle group 
is ?1�� ��	� � � ��@A. The best permutation is selected to 
form a new particle for the new generation. The new 
offspring population needs to be recalculated the particle's 
fitness value and inserted into the tree T. The processes are 
repeated until the termination criterion is satisfied. 

 

Algorithm: CRDPSO 
Input: 1) a D-dimension minimization problem F(.) 2) 
search space SBCD  3)the population size n 
1. Initialize the current particle swarm P={p1,p2,…,pn} 

2. Evaluate pi: Fi = F(pi)  

3. pbesti:=pj 

4. gbest :=pj  P where j = arg min{ F(pi) } 

5. Initialize BSP tree T to which consists of root node 
only 

6. for i:= 1 to n 

7.   [pi, F(pi)] insert to T 
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8. Next i 

9. While terminate criteria is not satisfied 

10.   for i= 1,2,…,n 

11.     ��� 789:9;<===>1� 
12.     ?��	� � � ��@A updated from Eq.(1)-Eq.(2) 

13.     ?1�� ��	�� � ��@A create new next generation 
according to the dynamic coordination mechanism 

14.   Next i 

15.   for i= 1,2,…,n 

16.     [pi, F(pi)] insert to T 

17.   Next i 

18.   for i= 1,2,…,n 

19.     if F(pi)<F(pbesti) 

20.       pbesti= pi 

21.     Endif 

22.   Next i 

23.   gbest =pj  Pwhere j = arg min{ F(pi) } 

24. Loop 

Output the optimal solution gbest 
Fig.1 The pseudo-code of CRDPSO 

IV. SIMULATION SETUP 

A. Test Function 

A set of standard test functions F={f1(x), f2(x),…, f8(x)} 
is adopted to test for the proposed algorithm and verify its 
performance.The eight test functions are shown in table 1. 

B. Algorithms Setting 

The performance of proposed CRDPSO is compared 
with standard RDPSO, cNRGA and CLQPSO[12]. To 
CRDPSO and RDPSO the contraction expansion factor 
α and � are set as [3]. To CLQPSO the � decreases linearly 
from 1 to 0.5 and other factors are set as [12]. To cNrGA, 
the cross rate is uniform crossover and sets as rx=0.5. The 
population size of all the algorithms is set to 100 and the 
maximum iteration number is set to 2000. The dimension 
of all the test functions is set as D = 30. Each test function 
independently runs 30 times, and the mean optimum and 
standard deviations of test functions are obtained after 30 
times experiments. 

V. SIMULATION RESULTS 

The performance of CRDPSO is compared with those 
of CLQPSO RDPSO and cNrGA. Table 2 presents the 
means and standard deviations of the 30 runs of the four 
algorithms on the eight test functions. Seen from Table 2, 
although RDPSO and CRDPSO both get best perform for 
f1, f2 and f6, CRDPSO is the most superior to other three 
algorithms for all test functions. CRDPSO has almost 
obtained the optimal solutions. The standard deviations of 

the optimal fitness for 30 independent trials of the 
algorithms are also listed in the table 2. The value in 
boldface indicates that the corresponding algorithm is the 
best amongst the test algorithms on a particular test 
function. It shows the standard deviation of CRDPSO is 
the best for all the test functions. This illustrates that for 
the vast majority of test functions, the stability of CRDPSO 
algorithm is the best. Therefore, from the detailed 
simulation results (mean and standard deviation), 
CRDPSO ranks first in all eight cases. CRDPSO obtained 
the highest average accuracy and it also is the most stable. 

VI. CONCLUSION 

Premature convergence and diversity are the most need 
to solve two problems by swarm intelligence optimization 
algorithms. Therefor a cooperative random drift particle 
swarm optimization algorithm based on search history 
decision (CRDPSO) is proposed. The two-dimensional 
space partitioning tree (BSP) is used to record the solutions 
and fitness values in the process of evolution. The 
continuous search space is divided into different 
overlapped sub-regions as a particle mutation range by the 
BSP tree. This makes the corresponding mutation is a kind 
of adaptive mutation and provides guidance for .global and 
local search of particles. The dynamic collaborative 
mechanism is introduced for better use of context 
information of each dimension, so as to make the most of 
any new information, which improves the performance of 
the variation of particle; prevents the algorithm from 
falling into the local convergence and prevents premature. 
Compared with other traditional algorithms, the 
experiment results on 8 standard testing functions show 
that the proposed algorithm has the best optimization 
ability, with enhancement in both convergence speed and 
precision those demonstrate the effectiveness of the 
CRDPSO. 
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TABLE 1 TEST FUNCTIONS 

  X x0 y0  X x0 y0 

f1 D ��
�

��	
 

[-100

100]D 
[0,…,0] 0 f5  DE ��

�

�F	
� �GHIJ�
K �� � �GL [-5.12

5.12]D 
[0,…,0] 0 

f2  D, �, �M, �,
�

�F	

�

��	
 [-10 10]D [0,…,0] 0 f6  

�
G2 �N�G6
O	
��  �����	 P �

2 � Q	�� RST
K ����	 U+20+e 

[-32 32]D [0,…,0] 0 

f3 DVD �
�

��	
W
��

��	
 

[-100

100]D 
[0,…,0] 0 f7 DE�GG� ��	 �  ���� � � � � ���L

�X	

��	
 [-29 31]D [0,…,0] 0 

f4 Y'Z�!E	��L , �,  [-10 10]D [0,…,0] 0 f8 
�[GGGD �� �M RST  �\]

�
��	

�

��	
� � 

[-600

600]D 
[0,…,0] 0 

TABLE 2 THE OPTIMIZE RESULTS OF THE TEST FUNCTION 

 f1 f2 f3 f4 

RDPSO 
0 

(0) 

0 

(0) 

1.1162E-02 

(1.2250E-02) 

1.55963E-10 

(1.64422E-10) 

CRDPSO 
0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

cNrGA 
3.5001E-02 

(1.7732E-01) 

1.4545E-02 

(2.6594E-02) 

1.7262E+03 

(6.1711E+02) 

3.5697E-01 

(1.4813E-01) 

CLQPSO 
1.4081E-06 

(3.5814E-07) 

4.6353E-05 

(9.9336E-06) 

9.8525E+03 

(1.9354E+03) 

1.9765E+01 

(1.4157E+00) 

 f 5 f 6 f 7 f 8 

RDPSO 
1.7756E+01 

(9.8049E+00) 

8.8818E-16 

(1.0029E-31) 

3.7207E+01 

(3.0608E+01) 

6.4840E-03 

(7.7636E-03) 

CRDPSO 
0 

(0) 

8.8818E-16 

(1.0029E-31) 

5.1687E-10 

(2.6966E-09) 

0 

(0) 

cNrGA 
6.7054E-01 

(8.4448E-01) 

1.8326E-02 

(4.4425E-02) 

8.6977E+01 

(8.4565E+01) 

9.6984E-02 

(8.5924E-02) 

CLQPSO 
3.1481E-06 

(1.5211E-06) 

6.1720E-04 

(1.2824E-04) 

4.1579E+01 

(1.0091E+01) 

2.0352E-05 

(7.6931E-06) 
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