
Research on Data Query Optimization Based on SparkSQL and MongoDB

Yujun Chen
College of Computer and Information

Hohai University
Nanjing, China

EthanChen@hhu.edu.cn

Yuansheng Lou, Feng Ye
College of Computer and Information

Hohai University
Nanjing, China

EthanChen911@yeah.net

Abstract—With the arrival of the era of big data, the analysis
and processing of massive data has become a very critical
computing problem. This paper proposes a query
optimization method based on SparkSQL and MongoDB. It
analyzes the principle and compares it with other literature
in order to draw the conclusion. The conclusion shows that
when dealing with problems such as interactive SQL queries,
the Apache Spark engine can reasonably decompose the
tasks based on the dependencies between the massive data,
thereby reducing the data query processing time and
improving the operating efficiency. Also it is very suitable
for storing some simple data with large amount due to
flexible query and index of MongoDB. Obviously, the
combination of the two can significantly improve the query
speed of massive data.

Keywords-component; massive data analysis; apache spark;
mongodb; query optimization

I.� INTRODUCTION
With the widespread use of computers and the rapid

development of the Internet, data has been growing
explosively. How to deal with large-scale data has become
a research hotspot [1]. In this context, the traditional data
warehouse application has been difficult to meet the OLAP
(Online Analytical Processing). Therefore, it is imperative
to seek a new type of highly scalable data warehouse and
efficiently analyze and process the data. Due to the
emergence of Apache Spark which is new big data
framework based on in-memory computing and can be
deployed on the Hadoop platform, many companies
gradually start using the Apache Spark platform. The most
important function of the data warehouse is to perform
OLAP and provide users with decisions, so the
performance of SQL queries is very important. Then big
data needs to be stored. MongoDB is a product between a
relational database and a non-relational database. Its
supported data structure is very loose, so it can store more
complex data types. The biggest feature of MongoDB is
that the powerful language query and high performance [2].

At present, there are many researches on the query
method that combines the big data engine and the database.
The literature [3] proposes a Hadoop-based distributed
double-level index structure [3] to establish different
indexes for different data types. Experiments show that
The level of data retrieval is still slow; Literature [4]
proposed Hadoop-based interactive big data analysis and
query method, mainly to connect the HDFS, Hive and
Hbase query test, the limitation is that only Hadoop and

database Join queries, no optimization [4]; Literature [5]
used Impala's big data query analysis [5], and literature [6]
used Hbase for query method [6]. The above methods all
have limitations not make deep research. Based on the
above work, this paper proposes an optimization method to
improve the query speed of massive data, and enhances the
availability of the system.

II.� RELATED TECHNOLOGY

A.� Apache Spark
Apache Spark, developed by the AMP Lab at the

University of California, Berkeley in 2009, is a large data
parallel computing framework based on in-memory
computing. The basic flow of Spark operation is as follows:
First, SparkContext is created by the Driver to perform
resource application, task allocation and monitoring. The
SparkContext constructs a DAG (Directed Acyclic Graph)
based on the RDD (Shared Memory Abstraction)
dependency. The DAG is submitted to the DAGScheduler
for parsing into the Stage, and then each TaskSet is
submitted to the TaskScheduler for processing; Executor
apply for a task to SparkContext. Task Scheduler Issues
Task to Executor and provides application code. The Task
runs on the Executor, feeds the results back to the
TaskScheduler, and then feeds back to the DAGScheduler
[7][8].

Figure 1. � Apache Spark operation basic flow chart

B.� MongoDB
MongoDB is written in C++ and is an open source

database system based on distributed file storage. It is a

144

2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science

978-1-5386-7445-1/18/$31.00 ©2018 IEEE
DOI 10.1109/DCABES.2018.00046

type of NoSQL database that runs on Unix, Windows, and
OSX platforms, supports 32-bit and 64-bit applications [9].
MongoDB is a scalable, high-performance, next-
generation database that features high performance, ease of
deployment, ease of use, and convenient storage of data.

MongoDB is a product between a balance relational
database and a non-relational database. The traditional
relational database generally consists of three levels of
concepts: database, table, and record. MongoDB consists
of three levels: database, collection, and document object.
The data format it stores is a collection of key-value pairs.
The key is a string, and the value can be any type in the
collection of data types, including arrays and document
objects. This data format, called BSON, is a binary
serialization document similar to JSON [10].

III.� OPTIMIZATION
The optimization method of this article includes two

parts: paging method of MongoDB and SparkSQL.

A.� Where-limit Optimization Paging Method
The query optimization method provided in the

MongoDB database is relatively simple. When the system
processes a query request, the system selects the fastest
query plan to execute, and the skip and limit functions are
not considered when executing the query plan. Now
database systems all store huge amounts of data. When
paging queries are made, if the data that needs to be
queried is behind a sorted collection, skipping a large
amount of data is required to affect the data query
efficiency, so this paper proposes a where-limit
optimization paging method in large-scale data sets.

This article divides the where-limit method into four
steps:

Step1: According to the query conditions to obtain the
value of the keyword field, and store it in the keyword
array;

Step2: Use the count function to determine the total
number of records in the database, and then calculate the
total number of pages to display based on the number of
records to be displayed per page;

Step3: Get the keyword array according to the query
conditions;

Step4: Paging query by keyword in keyword array.
The where-limit method is better than the skip-limit

method because it avoids using the skip function and the
system does not need to spend a lot of time to skip large
amounts of data [11]. When using the skip-limit method for
paging queries, the data offset of the paging (skip function
parameter value) is prioritized, but with different offsets,
the query time per page will be different: the larger the
offset, the longer the query time will be. Where-limit uses
a method to find an array of keywords to solve this
problem. In the query process, the user only needs to find
out the keyword array according to the query conditions,
and then decide to skip number of records according to the
index of the keywords in the array. The algorithm flow
chart is shown in Figure 2.

Enter the
page number

Run the
query and get

output

Figure 2. � Where-limit optimization method flow chart

B.� SparkSQL Optimization
This problem often occurs in SparkSQL: After

performing an aggregate operation such as join operation
on an RDD, most tasks execute quickly, but individual task
execute extremely slowly. For example, there are a total of
100 tasks. 97 tasks are executed within one minute, but the
remaining tasks take ten minutes. This situation is called
data skew [12] and is very common in SparkStreaming and
SparkSQL modules.

For example, the ‘hello’ key, corresponding to a total
of seven data on three nodes (as shown in Figure 3). These
data will be pulled to handle the same task, and the ‘world’
and ‘yes’ keys correspond to one data. That is, the other
two tasks only need to deal with a few of data. The first
task at this time may be seven times as long as the other
two tasks. The speed of the entire stage is determined by
the slowest task.

145

(hello,1)
(hello,1)
(hello,1)

(hello,1)
(hello,1)
(world,1)

(hello,1)
(hello,1)
(yes,1)

(hello,1)
(hello,1)
(hello,1)
(hello,1)
(hello,1)
(hello,1)
(hello,1)

(world,1)

(yes,1)

Figure 3. � SparkSQL task allocation chart

This situation will only occur in the shuffle process.
Generally used operators that trigger the shuffle operation
are: distinct, groupByKey, reduceByKey, aggregateByKey,
join, cogroup, repartition, and so on. In general, the most
straightforward and effective method for data skew is to
reduce the number of such operators that trigger the shuffle
operation. However, some data operations will still use
these operators more or less, so this paper proposes a two-
stage aggregation for optimization.

The core idea of this method is to perform two-stage
aggregation (as shown in Figure 4). The first step is local
aggregation, firstly add a random number to each key, such
as a random number within ten, then the original same key
becomes different. For example, (hello, 1) (hello, 1) (hello,
1) (hello, 1) (hello, 1) (hello, 1) becomes (1_hello, 1)
(1_hello, 1) (2_hello, 1) (2_hello, 1) (3_hello, 1) (3_hello,
1). Then, after adding the random prefix, perform the
aggregation operation. The result will become (1_hello, 2)
(2_hello, 2) (3_hello, 2). Then remove the prefix of each
key and will become (hello, 2) (hello, 2) (hello, 2). Make
the aggregation operation again will get the final result
(hello, 6).

(hello, 1)

(hello, 1)

(hello, 1)

(hello, 1)

(hello, 1)

(1_hello, 1)

(1_hello, 1)

(2_hello, 1)

(2_hello, 1)

(3_hello, 1)

(hello, 1) (3_hello, 1)

task

task

task

(1_hello, 2)

(2_hello, 2)

(3_hello, 2)

(hello, 2)

(hello, 2)

(hello, 2)

task (hello, 6)

Figure 4. � SparkSQL aggregate instance diagram

The method is to change the original key to add a
random prefix, so that the data originally processed by one
task can be distributed to multiple tasks to perform local
aggregation. It can solve the problem of processing
massive data of a single task. Then remove the random
prefix and perform global aggregation again to get the final
result. The advantage of this method is that the data skew
caused by the shuffle operation of the aggregation

operation is better, and improve the performance of the
Apache Spark significantly.

IV.� EXPERIMENT

A.� Experimental Environment and Datasets
The experimental data set is the real-time water level

data set of the Chu River from January 1, 2015 to July 24,
2017, with a total of 18,910,865 records. The experimental
environment is a small cluster of three computers. The
processor is an AMD Ryzen 7 1700X, the memory is 32G
Corsair DDR4 3000Mhz, the hard disk is the Samsung
sm961 128g SSD, and the graphics card is ASUS. GeForce
GTX 1060.

The database selects MySQL and MongoDB. The
Apache Spark version is 2.2.0, MongoDB version is 3.6,
MySQL version is 5.7, and the integrated development
tool is IntelliJ IDEA.

B.� Experimental Analysis
The experiment firstly was conducted by MySQL and

MongoDB to import the dataset of Chu river. Then make
some read and write operation. Finally, use the IDEA to
connect to MongoDB through Spark, and invoke the
SparkSQL and where-limit optimization methods to do
research.

(1) The time consumed by the two types of database to
import the Chu river data set

Figure 5. � MySQL and MongoDB import data time consuming

When the amount of data is small, the efficiency of the
two kinds of databases is almost the same. After the data
volume level increases to tem million levels, the
advantages of MongoDB become more and more obvious.
Due to the multithreading operation recommended by
MongoDB official (numInsertionWorkers), in essence, it
can split the insert task into multiple threads. As you can
see, MongoDB imports data faster than MySQL.

(2) Query the lowest water level detected by each
monitoring station

146

Figure 6. � Check the lowest water level detected by each monitoring

station time consuming

There are 70 monitoring stations in the data set of this
paper. On average, there are 250,000 data in one
monitoring station. If the query on stand-alone database
with a data size of tens of millions, it will take a long time.
However, under the Apache Spark platform and the
optimized method, apparently the operating efficiency is
very high. Moreover, this data size has not yet reached the
Apache Spark performance bottleneck,

This paper also compares the query speeds of other
papers. In literature [4], Hbase and SparkSQL were used to
query the dataset on the Hadoop cluster platform. The
query execution time using the original method in
literature [4] and the optimization method proposed in this
paper is shown in Figure 7. g

Figure 7. � Comparison experiment diagram

It can be seen that the method optimized in this paper
has better query speed in this experimental environment
and can satisfy the problem of slow query operation under
massive data. When dealing with lightweight data, the
Apache Spark platform can achieve very satisfactory
results based on the advantages of its memory operations.
Of course, due to the stability of the system and memory
consumption issues, it has limitations when it comes to
extreme high-level data.

So the SparkSQL+MongoDB query optimization
method proposed in this paper, this method is really
helpful for improving the query speed, and can effectively
improve the database query efficiency.

V.� CONCLUSIONS
This article first introduced the knowledge of Apache

Spark and MongoDB, and use optimization methods
proposed in this paper to conclude that it can effectively
improve the speed of data query. Because data set and
hardware configuration conditions are limited, it can not
fully utilize the capabilities of Apache Spark. This paper
aim to share experimental results and related knowledge
for related users who are not yet understood and learning.
Obviously, compared to simply using MySQL or
MongoDB, the optimization method proposed in this
article is a big lead in the query speed. Of course, this
method still has limitations, hope to work hard to make
improvements in the future.

ACKNOWLEDGMENT

This work was partly financially supported through
grants from the National Science and Technology Support
Project of China (2013BAB05B00), 2013 Jiangsu
Province hydrological science and technology project
(2013025), “Six Talents Peak” project in 2017 Jiangsu
Province (xydx-078), and the 2017 Jiangsu Province
postdoctoral research funding scheme (1701020C).

REFERENCES

[1]� S. J. Walker, Big Data: A Revolution That Will Transform How
We Live, Work, and Think [C].� Mathematic & Computer
Education, 2013, 47(17): 181-183.

[2]� J. Dean, and S. Ghemawat. Simplified Data Processing on Large
Clusters [M]. ACM, 2008, 51(1):107-113.

[3]� J. Feng, W. G. Xu, D. Q. Feng. Hadoop-based Interactive Big Data
Analysis Query Processing Method [J]. Computer and
Modernization, 2017, (10):29-35.

[4]� C. Y. Li, R. G. Wang, X. H. Liang. Hadoop-based Interactive Big
Data Analysis Query Processing Method [J]. Computer
Technology and Development, 2016, 26(8):134-137.

[5]� C. Guo, B. Liu, W. W. Lin. Big Data Query Analysis and
Computation Performance of Impala [J]. Application Research of
Computers, 2015, (5): 1330-1334.

[6]� X. D. Du. Hbase-based Distributed Query Optimization in Big
Data Environment [J]. Computer Disk Software and Application,
2014, (8): 22-24.

[7]� M. Zaharia, R. S. Xin, P. Wendell, et al. Apache Spark: A Unified
Engine For Big Data Processing [J] Communication of the Acm,
2016, 59(11):56-65.

[8]� X. R. Meng. Spark SQL: Relational Data Processing in Spark [C].
ACM SIGMOD International Conference on Management of Data
ACM, 2015:1383-1394.

[9]� Z. Parker, S. Poe, S. V. Vrbsky. Comparing NoSQL MongoDB to
an SQL DB [C]. ACM Southeast Conference, ACM, 2013:1-6.

[10]� J. S. Zhu, J. X. Wang, J. F. Zhang. Research and Application of
Big Data Query Technology in NoSQL Database [J]. China
Railway Science, 2014, 35(1):135-141.

[11]� H. Li, R. B. Wang. Design Method for Multi-conditional Paging
Query Optimization [J]. Computer Engineering, 2010, 36(2):51-52.

[12]� Z. Wang, Q. Chen. MapReduce Data Equalization Method Based
on Incremental Partition Strategy [J]. Chinese Journal of
Computers,2016(1):19-35.

147

