
Top-k Query for Weighted Interactive Product Configuration

Baijun Chen

Software Engineering
Tongji University
Shanghai, China

1641462@tongji.edu.cn

Tao Feng

Software Engineering
Tongji University
Shanghai, China

1641492@tongji.edu.cn

Abstract—Interactive product configuration should be
complete and backtrack free. it requires that the system re-
sponds quickly. A popular solution to implement interactive
product configuration is Binary Decision Diagrams(BDDs)
which represents the solution space of product model, the
structure of BDDs is very compact, and the interactive
configuration can be carried out in linearly dependent time
of BDD’s size. In this paper, we proposed the concept of top-k
query about weighted interactive product configuration based
on BDDs. the solution space of BDD may be exponential
explosion in practice, we defined weight value for each valid
configuration, the weight represents price, quality etc., in the
interactive phase, users input a rule and k, the system lists
top-k maximum(minimum) valid configurations to user for
reference. Using our code, we solved a number of problems
including those from real application and synthetic data set.
Our experiment results showed that our algorithm had a
faster response time than the traditional algorithm.

Keywords-Interactive product configuration Binary deci-
sion diagrams Top-k query.

I. Introduction

Interactive product configuration is often presented as

an application in constraint satisfaction problem(CSP) [1].

It requires that the system has the features of completion,

free backtrack and quick response. The product model

consists of a set of product variables with finite domains

and a set of product rules. These rules define the rela-

tionship between variables. A valid product configuration

is an assignment to each variable that satisfies all the

product rules. Users can choose freely among any valid

configurations and will be prevented from making choices

that no valid configuration satisfies. In each iteration of the

algorithm, invalid values in the domain of the variables

are pruned away quickly, the user then assigns value to

unassigned variable and the algorithm terminates until

each variable has only one assignment.

CSP had been widely studied. Some extended frame-

works had been studied. Freuder and Wallace [2] consid-

ered its special case called maximal constraint satisfaction
problem(Max-CSP), in which all constraints have the same

weight; they extended some basic backtracking and local

consistency methods for CSP to Max-CSP. Wallace and

Freuder [3] investigated some heuristic methods for Max-
CSP, which were based on the min-conflicts heuristic.

Wallace [4] said the min-conflicts heuristic combined

with the random walk strategy was a most successful

method for Max-CSP. Nonobe and Ibaraki [5] considered

constraints with different weights, given a number of

constrains and their weights of importance, which asks

to minimize the total weight of unsatisfied constraints,

they proposed an improved tabu search algorithm for

WCSP. Jason Li [17] solved CSPs in parallel, they proved

that constraint satisfaction problems without the ability

to count are solvable by the local consistency checking

algorithm. Kuang J [18] proposed interactive product con-

figuration driven by customer requirements priority, AC-3

algorithm was adopted to remove incompatible elements

in variable domain, but they didn’t consider the response

time of the system. The algorithms are not fit for the our

situation, the heuristic has a probability of getting into

the local optimality, and they can only find one optimal

configuration without considering the running time of

the algorithm. Their methods are time-consuming and

unsuitable. In the interactive system, the response time

is very important. In [19], the author proved that method

based on BDD are suitable for interactive system, but they

didn’t consider the different element’s importances in each

variable’s domain, and also the solution space are huge in

some scene.
In this paper, we considered a special case of WCSP,

because elements in the variable domain are different.

Elements have different importance to represent price,

stability etc.. A valid configuration consists of all vari-

ables, each variable has a weight value according to its

assignment. Our WCSP sum all the weight value of each

variable to represent the weight of the valid configuration.

The solution space(all valid configurations) which satisfy

the user’s customization may be exponential explosion,

so we consider the top-k query concept into our WCSP.

The system shows the top-k valid configurations with

maximum(minimum) weight to the user which helps the

user to make better choice. it is also necessary to reduce

the response time of the system in the interactive process.
In this paper we developed an efficient WCSP solver

with top-k query. The main advantage of our approach is

that we can respond the user with top-k valid configura-

tions with maximum weight quickly without knowing all

valid configurations in solution space. Our contributions

mainly include the followings:

• The paper implemented a traditional top-k query algo-

rithm for weighted interactive product configuration.

• The paper proposed two pruning algorithms(TP and

AO) for weighted interactive product configuration .

326

2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science

978-1-5386-7445-1/18/$31.00 ©2018 IEEE
DOI 10.1109/DCABES.2018.00090

Figure 1. T-shirt problem configure profile(cp).

Figure 2. Solution space of T-shirt problem.

The rest of this paper is organized as follows. In Section

2, we define interactive product configuration solvers

based on BDD. In Section 3, we introduce our WCSP
solver. In Section 4, we propose our top-k query algorithm

based on BDD, this paper proposes two algorithm(two-

pointer-based and array-offset based) to prune BDD for

reducing system response time. In Section 5, We exper-

iment our WCSP with real and synthetic data set, the

experimental results show the efficiency of our algorithm.

In Section 6. we close this paper with a conclusion.

II. Interactive Product Configuration

A. Product Configuration

Interactive product configuration is a special application

of constraint satisfaction problems(CSP) where a user is

assisted in interactively assigning values to variables by a

software tool. This software, called a configurator which

assists the user by calculating and displaying the available

and valid choices for each unassigned variable. There are

two main points in the interactive product configuration.

First, the user can freely choose any valid assignment.

Second, feedback should be fast enough to allow real-time

interaction.

Definition 1. A configuration problem C is a triple (X,
D, F), where X is a set of variables x1, x2, ... ,xn. D is the

cartesian product of their finite domains. D = D1 × D2

... Dn, F=f1, f2, ..., fm is a set of propositional formulas

over atomic propositions xi = v, where v ε Di, specifying

conditions that the variable assignments must be satisfied.

Each fi is a propositional expression inductively defined by

φ ≡ xi = v | φ ∧ ψ | φ ∨ ψ | ⇁φ for each v ∈ Di

For logical implication φ ⇒ ψ ≡ ⇁φ ∨ ψ.

Example 1. Consider the T-shirt problem(Fig.1) with

three variables(color, size, print), and two rules need to

be met, one is (print==MIB) ⇒ (color==Black) which

means if we choose MIB for print then color==Black
must be chosen, another is (print==STW) ⇒(size!=Small)
which means if we choose STW for print then size==small
should’t be chosen.

The configure problem C of T-shirt {X, D,
F}, X={x1, x2, x3} representing color, size, print.

Figure 3. BDD of f = X1+X2·X3.

Figure 4. BDD of T-shirt problem.

Variable domain D1={Black, White, Red, Blue},
D2={Small, Medium, Large}, D3={MIB, STW}.
F={F1, F2}, F1={(print==MIB)⇒(color ==Black)},
F2={ (print==STW)⇒(size!=Small)}. So there are

totally |D1||D2||D3|=24 possibility. There are 11 valid

configurations satisfying F1 and F2, they form the solution

space(Fig.2).

B. User Interaction

Configurator assists the user interactively to reach a

valid product configuration(each variable has one valid

assignment), so a faster response speed is necessary. The

user backtrack-free assigns to variables as long as the

user input one rule. At each step of the interaction, the

configurator reports the valid domains to the user based

on the current partial assignment resulting from his earlier

choices.

C. Binary Decision Diagrams

In computer science, a binary decision diagram(BDD)

is a data structure which is used to represent a Boolean

function. BDDs can be considered as a compressed rep-

resentation of sets or relations. An example of BDD

represents f = X1+X2·X3 is shown in Fig.3, the dotted line

indicates that the variable is assigned to 0, the solid line

indicates that the variable is assigned to 1.

D. Compiling the Configuration Model for T-shirt Prob-
lem

The BDD which represents the solution space of the T-

shirt problem is shown in Fig.4. In the T-shirt problem,

there are three variables: X1, X2 and X3, whose domain

sizes are four, three and two. each variable is represented

by a vector of Boolean variables. the Boolean vector

for the variable Xi with domain D is {Xli−1
i , ..., X1

i , X0
i },

where li = �lg|Di|�, For T-shirt problem, variable X2 which

327

corresponds to the size of the T-shirt, size is represented

by the Boolean vector (X1
2, X0

2
), 〈 X1

2:0, X0
2
:0 〉==Small, 〈

X1
2:0, X0

2
:1 〉==Medium, 〈 X1

2:1, X0
2
:0 〉==Large, any path

from the root vertex to the terminal vertex 1, corresponds

to one or more valid configurations. For example, the

path from the root vertex to the terminal vertex 1, with

all the variables taking low values represents the valid

configuration (black,small,MIB). Another path with X1
1,

X0
1
, X1

2 taking low values, and X0
2

taking high value

represents two valid configurations: (black,medium,MIB)
and (black,medium,STW), in this path the variable X0

3
is a

‘don’t care’ variable and hence can take both low and high

value, which leads to two valid configurations. Any path

from the root vertex to the terminal vertex 0 corresponds

to invalid configurations.

III. Weighted Constraint Satisfaction Problem

This paper considered weight on the element in each

variable’s domain. Different elements may have dif-

ferent importance which corresponds to price, quali-

ty etc.. the weight of valid configuration is the sum

of all its variables. For T-shirt problem, weight in-

formation is setted by manufacturer, and is shown in

Fig.1, each valid configuration has a weight value(eg.

weight(Black,Medium,MIB)=0.21+0.45+0.32=0.98). Usu-

ally, for configure problem C, the number of valid config-

urations is exponential explosion. In the user interactive

phase, the user inputs a rule and top k number, the

configurator will respond to the user top-k maximum

valid configurations as soon as possible to guide users to

make better choices according to weight information. Our

research majors in how to improve the response speed of

the system for top-k query no matter what rules the user

inputs.

IV. Top-k Query Algorithm for WCSP

A. Traditional Algorithm

When the user assign a new variable and top-k value, the

system gets a new BDD according to the new assignment,

then the traditional algorithm gets all valid configurations

based on depth searched on BDD. Every time it gets one

valid configuration, then calculates its weight value. The

min-heap whose size equals k is used to save the finally

top-k query results. The running time of the algorithm is

shown as follows.

T(n)=O(n+h*s*2) (1)

n: vertex num of BDD; h: encode bit num; s:num of

valid configurations(n:10, h=5, s=11 in T-shirt problem).

Example 2. The BDD of T-shirt problem is shown

in Fig.4, the weight information is shown in Fig.1. we

take a depth first search for BDD. then we get all

valid configurations, for one valid configuration, such as

array={x0
1
:0, x1

1:0, x0
2
:0, x1

2:0, x0
3
:0}. We init weight=0,

{x0
1
:0, x1

1:0}, color=black, then weight+=0.21; {x0
2
:0, x1

2:0},
size=Small, then weight+=0.45; {x0

3
:0}, print=MIB, then

weight+=0.32; finally, weight=0.86. we compare all of

them, we can get the finally top-k query results in min-

heap.

The disadvantage of this algorithm is that all valid

configurations are visited, which means all vertexes in

BDD are visited, and computing weight is redundant,

supposing we get array1={x0
1
:0, x1

1:0, x0
2
:0, x1

2:0, x0
3
:0},

array2={x0
1
:0, x1

1:0, x0
2
:0, x1

2:0, x0
3
:1}, for above two

valid configurations, we all init the weight=0; we must

calculate color=black, size=Small twice, so the computing

is inefficiency.

B. Top-k Query Pruning Algorithm Based Two-
Pointer(TP)

TP improves the disadvantage of traditional algorithm.

TP adopts the pruning algorithm to avoid visiting all

vertexes in the BDD, so only partial valid configurations

are known. It is based on the idea of top-k search, for

each valid configuration, the weight is the SUM of all

its variables, weight=f (v0,v1,...,vn), for variable vi, if we

know its assignment, we use its true weight instead vi,

else upper weight instead vi. Each time when a vertex is

visited, TP pre-calculates the upper weight, if the upper

weight less than the weight of min-heap top, subsequent

vertexes in the current path don’t need continue to visit.

TP updates weight with two pointers, one pointer points

to the current vertex, the other points to father vertex, if

they point to the same variable in cp, it indicates that the

assignment of the variable is not determined, else it indi-

cates the variable of father pointer points is determined,

then TP updates the current weight. The running time of

the algorithm is shown as follows.

T(n)=O(k1 × n+h×s×k2), 0< k1 <1, 0< k2 <1, (2)

The following concepts are important for TP, TP is shown

in algorithm 1,

• matrix weight[][]: weight information of variable

domain in cp;

• leveltocpvar[]: mapping of variable’s level in BDD to

variables in cp;

• max weight[]: the max weight of each variable in cp

file.

• upper weight[]: the sum of unknown variable’s max

weight.

upper weight[i] =
n∑

k=i

max weight[k] (3)

Example 3. In T-shrit.

• matrix weight[][]={ [0.21(Black), 0.65(White),
0.12(Red), 0.76(Blue)], [0.33(Small), 0.45(Medium),
0.12(Large)], [0.32(MIB), 0.22(STW)]},

• leveltocpvar[]={1, 1, 2, 2, 3 }, in which

leveltocpvar[0](x0
1
) and leveltocpvar[1](x1

1) both

point the first variable color in cp, leveltocpvar[2](x0
2
)

and leveltocpvar[3](x1
2) point second variable size,

leveltocpvar[4](x0
3
) points third variable print.

• max weight[]={0.76, 0.45,0.32}, the max weight val-

ue of each variable in cp.

328

• upper weight[]={1.53, 0.77, 0.32},
upper weight[0]=0.76+0.45+0.32,

upper weight[1]=0.45+0.32,

upper weight[2]=0.32.

Algorithm 1: TP Query-top-k

Require: i:int, v:vertex, x:array[0, 1, ..., n] of int,

weight:double

Ensure: top-k max-weight valid configurations

1: if v.value==0 then
2: return;

3: end if
4: weight=getCurrentWeight(f ather, i, weight,x);

5: upperweight= weight +
upper weight[leveltocpvar[i]]

6: if upperweight < minheap.top.value then
7: return;

8: else if i==n && v.value==1 then
9: Add weight and array[0, 1, ..., n] to minheap,

return;

10: else
11: if v.index > i then
12: x[i]=0; f ather=i;TP Query-top-

k(i+1,v,x,weight);
13: x[i]=1; f ather=i;TP Query-top-

k(i+1,v,x,weight);
14: else
15: x[i]=0; f ather=i;TP Query-top-

k(i+1,v.low,x,weight);
16: x[i]=1; f ather=i;TP Query-top-

k(i+1,v.high,x,weight);
17: end if
18: end if

Example 4. The BDD is shown in Fig.4. Depth first

traversal of BDD. Init the weight=0, the first visited

vertex is id=1, then id=2, the current vertex is id=2,

father vertex is id=1, they point same variable (color), we

only know x0
1
=0, so the assignment of color has not been

known, then the vertex id=3 visited, father vertex is id=2,

they belong to different variable in cp, so the assignment

of color is known, color=black, update weight+=0.21.

upper weight is upper(weight)=weight+upper weight[1],

if current valid configurations number less then top-k,

pruning is prohibited. else if upper(weight) less then the

top-element of min-heap, then return.

C. Top-k Query Pruning Algorithm Based Array-
Offset(AO)

The overall idea is the same as in TP, but pruning ability

is better than TP. TP knows partial assignment of levels, it

does’t know the assignment of variable in cp(only knowing

x0
0
=1, color is still unassigned), so TP use max weight in

color instead, so the upper bound weight is higher. AO

needn’t to estimate the upper weight, we set the initial

weight=upper weight[0], in the process of traversing the

BDD, update the weight in real time. The running time of

the algorithm is shown as follows.

T(n)=O(k1 × n+h×s×k2), 0< k1 <1, 0< k2 <1, (4)

in which k2 is less then that in TP. AO reorder elements

in variable domain, for each variable, we reorder elements

according to the weight value from big to small. Be-

fore {Black:0.21, White:0.65, Red:0.12, Blue:0.76}, after

{Blue:0.76, White:0.65, Black:0.21, Red:0.12,}.
The following concepts are introduced, the AO is shown

in Algorithm 2.

• offset{}, mapping from level to matrix weight[][].

• position[], the current variable assignment in cp.

• init weight=
∑n

k=1 max weight[k].

Example 5. In T-shrit problem.

• After reordering, matrix weight[][]={
[Blue:0.76{x1

1=0, x0
1
=0}, White:0.65{x1

1=0, x0
1
=1},

Black:0.21{x1
1=1, x0

1
=0},

Red:0.12){x1
1=1, x0

1
=1}],

[Medium:0.45{x1
2=0, x0

2
=0}, Small:0.33{x1

2=0, x0
2
=1},

Large:0.12{x1
2=1, x0

2
=0}],

[MIB:0.32{x0
3
=0}, STW:0.22{x0

3
=1}]}

(note: the BDD structure also change, and BDD is

not shown here),

• init the position[]={0, 0, 0}, so init the col-
or=Blue, size=Medium, print=MIB; position[0]∈[0,
3], position[1]∈[0, 2], position[2]∈[0, 1].

• offset{}={x0
1
:1, x1

1:2, x0
2
:1, x1

2:2, x0
3
:1}, BDD level is

converted to Decimal digits representation according

to variable in cp.

Example 6. In T-shrit problem. AO init the

weight=upper weight[0](0.76+0.45+0.32=1.53) and

position[]={0, 0, 0}, then if x j
i takes zero, AO do nothing,

else, AP update weight and position, we give a concrete

example, if x0
1
=0, nothing to do, next, we get x1

1=1, update

weight=1.53-0.76+0.21=0.98 and position[]={2,0,0}, next

x0
2
=0, nothing to do, x1

2=0, nothing to do, last, we

get x0
3
=1,update weight=0.98-0.32+0.22=0.88 and

position[]={2,0,1}, finally, AP get {Black,Medium,STW},
weight=0.88

In conclusion, the traditional algorithm visits all solu-

tions in the solution space, so it is very time consuming;

the other two pruning algorithm only visit partial solutions

in the solution space, so it reduces system response time;

the AO is better than TP.

V. Experiment

In our experiment, we experimented with real data

and synthesized data set. One real data set from SA-

IC motor, the other two(bike-2, pc-2) real data set are

from https://www.itu.dk/research/cla/externals/clib/(CLib :

Configuration Benchmarks Library); then we synthesized

one data set(syn-data). There are not many studies based

on our scenario, so we experimentally compared the

traditional algorithm with our algorithms. The description

of the experiment data set is shown in table1(n: vertex

329

Algorithm 2: AO Query-top-k

Require: i:int, v:vertex, x:array[0, 1, ..., n] of int,

weight:double, position:array[0, 1, ...,m] of int

Ensure: top-k max-weight valid configurations

1: if v.value==0 then
2: return;

3: end if
4: if weight < minheap.top.value then
5: return;

6: else if i==n && v.value==1 then
7: Add weight and array[0, 1, ..., n] to minheap,

return;

8: else
9: if v.index > i then

10: x[i]=0;

11: AO Query-top-k(i+1,v,x,weight,position);

12: x[i]=1;

13: old value = the original weight

14: new value = new weight according to offset[i]

15: weight=weight-old value+new value;

16: position[leveltocpvar[i]] += o f f set[i];
17: AO Query-top-k(i+1,v,x,weight,position);

18: position[leveltocpvar[i]] -= o f f set[i];
19: else
20: {others are the same as above}
21: x[i]=0;

22: AO Query-top-k(i+1,v.low,x,weight,position);

23: x[i]=1;

24: AO Query-top-k(i+1,v.high,x,weight,position);

25: end if
26: end if

Table I
Information of experiment data set.

Information SAIC Bike-2 Pc-2 Syn-data
n 125126 3129 13332 840
h 279 127 84 86
s 14889012 122461056 1066310 507142944

num of BDD; h: encode bit num; s:num of valid con-

figurations). (CPU:Intel(R) Xeon(R)CPU E5-2620 v3@

2.40GHz, MemTotal:64G).

For weight information, we randomly assigned the

elements of the variable domain in cp. For distributed

parallelism top-k query, we used one master and four

slaves. Fig.5 shows the results of our experiment(the

running time of traditional algorithm is too long, so it isn’t

displayed in Fig.5, but it is explained in the description).

VI. Conclusion

This paper introduced top-k query for weighted in-

teractive product configuration, because of the size of

solution space is exponentially exploded, we introduced

the concept of top-k query based on BDD, which guides

the user to make better choices. Two pruning algorithm-

s(TP and AO) were introduced in this paper to speed up

(a)

(b)

(c)

(d)

Figure 5. Running time for different top-k value (a)SAIC (tradition-
al:65s) (b)PC-2 (traditional:2s) (c)Bike-2 (traditional:183s) (d)Syn-data
(traditional:626s)

330

response time, Further research includes implementation

and evaluation of top-k query by multi-thread.

References

[1] Sabin D, Weigel R. Product Configuration Frameworks-A
Survey[J]. IEEE Intelligent Systems & Their Applications,
1998, 13(4):42-49.

[2] Freuder E C, Wallace R J. Partial Constraint Satisfaction[J].
Artificial Intelligence, 1992, 58(13):21-70.

[3] Wallace R J, Freuder E C. Heuristic Methods for Over-
Constrained Constraint Satisfaction Problems[C]// Over-
Constrained Systems. Springer-Verlag, 1996:207-216.

[4] Wallace R J. Analysis of heuristic methods for partial
constraint satisfaction problems[C]// International Confer-
ence on Principles and Practice of Constraint Programming.
1996:482–496.

[5] Nonobe K, Ibaraki T. An Improved Tabu Search Method
For The Weighted Constraint Satisfaction Problem[J]. In-
for Information Systems & Operational Research, 2001,
39(2):131-151.

[6] Hadzic T, Jensen R M, Andersen H R. Calculating Valid
Domains for BDD-Based Interactive Configuration[J]. Eprint
Arxiv, 2007.

[7] Madsen J N. Methods for interactive constraint satisfac-
tion[J]. 2003.

[8] Hadzic T, Subbarayan S, Jensen R M, et al. Fast backtrack-
free product configuration using a precompiled solution
space representation[C]// Peto Conference. 2004:131–138.

[9] Jensen R M. CLab: A C++ Library for Fast Backtrack-
Free Interactive Product Configuration[M]// Principles and
Practice of Constraint Programming CP 2004. Springer
Berlin Heidelberg, 2004:816-816.

[10] Mller J, Reif H, Hulgaard A H. Product Configuration
over the Internet[C]// Informs Conference on Information
Systems and Technology. 2001:33-47.

[11] Subbarayan S, Jensen R M, Hadzic T, et al. Comparing Two
Implementations of a Complete[J]. Cp04 Cspia Workshop,
2004:97–111.

[12] Pan G, Vardi M Y. Symbolic Techniques in Satisfiability
Solving[J]. Journal of Automated Reasoning, 2005, 35(1-
3):25-50.

[13] Weigel R, Faltings B. Compiling constraint satisfaction
problems[J]. Artificial Intelligence, 1999, 115(2):257-287.

[14] Subbarayan S. Integrating CSP Decomposition Techniques
and BDDs for Compiling Configuration Problems[M]// Inte-
gration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems. Springer Berlin
Heidelberg, 2005:351-365.

[15] Duffy K R, Bordenave C, Leith D J. Decentralized Con-
straint Satisfaction[J]. IEEE/ACM Transactions on Network-
ing, 2013, 21(4):1298-1308.

[16] Barto L, Kozik M. Constraint Satisfaction Problems Solv-
able by Local Consistency Methods[M]. ACM, 2014.

[17] Li J, O’Donnell R. Bounding Laconic Proof Systems by
Solving CSPs in Parallel[C]// ACM Symposium on Paral-
lelism in Algorithms and Architectures. ACM, 2017:95-100.

[18] Kuang J, Jiang P. Interactive product configuration driven
by customer requirements priority[C]// International Confer-
ence on Computer Supported Cooperative Work in Design.
IEEE, 2008:58-63.

[19] Subbarayan S. Integrating CSP Decomposition Techniques
and BDDs for Compiling Configuration Problems[M]// Inte-
gration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems. Springer Berlin
Heidelberg, 2005:351-365.

[20] Lu H, Yue T, Ali S, et al. Zen-CC: An Automated and
Incremental Conformance Checking Solution to Support
Interactive Product Configuration[C]// IEEE, Internation-
al Symposium on Software Reliability Engineering. IEEE
Computer Society, 2014:13-22.

331

