
Research and Development of a XML Modeling Tool

Deng Jia, Liu Hongxing
School of Computer Science and Technology

Wuhan University of Technology,
Wuhan, China

jiadeng@whut.edu.cn, liuhongxing@whut.edu.cn

Abstract—The XML schema is used to describe the structure
and constraint of XML instance document. The designers of
XML are required to proficiently use the schema definition
language to write XML schema. In the development of large
and medium XML schema, direct writing XML schema is
difficult, which entails appropriate design tools to improve
the development efficiency. A XML modeling tool dedicated
to development of XML schema is designed and
implemented based on MetaEdit+ meta-modeling tool. The
designer uses this tool to first establish the XML conceptual
model, and then transform the XML conceptual model to
XML Schema. An instance is used to introduce the
application method of this tool. Verification shows that the
automatically generated XML Schema document is
syntactically correct.

Keywords XML Conceptual Modeling; XML Modeling
Tools; MetaEdit+ Meta-Modeling

I. INTRODUCTION
Currently many efforts have been put into the research

on XML conceptual modeling, such as X-Entiry [1], X-
CM [2] ,XSEM [3] and XUML [4]etc., which preliminarily
formed several categories of XML conceptual models.
There are mainly two types in terms of content and form:
the extended ER model and extended UML class diagram,
yet special XML modeling tool has not been formed. Such
meta-modeling tools as MetaEdit+ [5], EMP [6],
VMSDK [7] etc. that emerged in recent years provide a
good environment for the development of modeling tool.

The meta-modeling tool can be used to design modeling
language and implement the modeling tool supporting this
modeling language [8]. With GOPPRR as meta-modeling
language, MetaEdit+ meta-modeling tool is simple and
easy to use as it provides flexible domain specific language
definition function, integrates manifold graphical user
interface tools to customize representation methods, and its
meta-model editor adopts dialogue box. This tool provides
MERL script language to define generator and model
mapping rule to implement the model transformation
algorithm. The paper adopts MetaEdit+ to realize XML
modeling tool and uses GOPPRR to define XML
conceptual modeling language, which is favorable for the
users to visually establish a conceptual model. Besides,
MERL is used to define the generator to realize self-
automatic transformation from conceptual model to logic
model, thereby improving the development efficiency of
XML schema.

II. MDA BASED XML DESGIN
MDA puts forward four layers of architecture, which are

respectively meta-meta model layer (M3), meta-model layer
(M2), model layer (M1), and instance layer (M0). The
relation between the layers can be regarded as follows: each
layer is the instance of its upper layer and the abstraction of
its next layer. With the MDA idea as reference, as shown in
Fig.1, the XML design and tool research can be concentrated
on two layers and in two stages.

Business Needs XML Conceptual
Model PIM

Conceptual
Modeling Tools

Domain expert/XML designer

Conceptual Modeling XML Logical Model
PSM

Transformation
Tool

Transfromation
algorithm

Model Transformation

1 XML Conceptual Modeling 2 Model Transformation

M1

M2
XML Conceptual Model

Language
XML Logical Model
Language XSD

Mapping
Rules

description description
propose

support

define

used

Figure 1: MDA Based XML Design

(1) Two layers: M1 layer, M2 layer
The model-driven XML design is mainly concentrated

in M1 layer and M2 layer in MDA system architecture. In
M1 layer, the design method of relational data base is
drawn as an analogy: Firstly, the designer establishes XML
conceptual models according to the actual business
demands, then uses tools to automatically generate XML
logic model. The establishment of models and

transformation between models are defined and realized by
M2 layer in fact. In M2 layer, to establish conceptual
models and transform the models need support by
corresponding tools. The XML conceptual modeling tool
supports XML conceptual modeling language to define
and describe XML conceptual model. The model
transformation tool supports mapping rule and
transformation algorithm in M2 layer. The XML logic

318

2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science

978-1-5386-7445-1/18/$31.00 ©2018 IEEE
DOI 10.1109/DCABES.2018.00088

model is generated via transformation with XML
conceptual model as source objective model.

(2) Two stages: XML conceptual modeling and model
transformation

XML conceptual modeling: This is the process of
establishing XML conceptual model. A XML conceptual
modeling language is defined, and a modeling tool
supporting this modeling language is established, to
visually establish XML conceptual model.

Model transformation: The XML conceptual model is
transformed into the XML logic model. The paper adopts
XML Schema as the XML logic model. The XML
conceptual model is a platform independence conceptual
model (PIM), and is on the conceptual layer; the XML
Schema is a platform specific logic model (PSM) (specific
to XML language, and is described using XML Schema
Definition Language), and is on the logic layer. The XML
conceptual model and XML Schema are both on different
platforms and in different stages. Before model
transformation, it is needed to define the mapping rules
between XML conceptual model and XML Schema to
transform the model via transformation algorithm with the
guidance of mapping rules.

The model-driven XML design method separates the
business logic and concrete implementation platform from
two layers and two stages. The XML conceptual modeling
tool and model transformation tool can help the developers
to design XML Schema, as the developers no longer need
substantive manual coding to develop XML, but can
establish XML conceptual model visually, then transform
the model to generate XML Schema document. From
establishment of conceptual model to generation of XML
Schema document, the developers do not need an in-depth
knowledge of XML Schema details, the XML Schema

generated via inter-model transformation is the result of
automatic transformation to a certain extent. This shows
that the model-drive design method can effectively
improve the development efficiency of XML.

III. DEVELOPMENT OF XML MODELING TOOL
To apply the model-driven XML design method entails

appropriate conceptual modeling tools and model
transformation tools as support. The conceptual modeling
tools help the XML schema designers to design XML
conceptual model, while the model transformation tools
transform the conceptual model into XML Schema
document. In terms of the four-layer model of MDA, the
conceptual model belongs to M1 layer, conceptual
modeling language belongs to M2 layer and is used to
describe the conceptual model of M1 layer, the conceptual
modeling tools belong to M2 layer. To define and realize
conceptual modeling language and modeling tools of M2
layer, meta-modeling language and meta-modeling tools of
M3 layer are needed as support.

A. XML conceptual modeling language
XML conceptual modeling language is used to express

the modeling language of XML conceptual model (Adopt
XUML [4] model), and is established using the GOPPRR
meta-meta model belonging to meta-modeling language of
M3 layer in the MetaEdit+ meta-modeling tool (i.e.
metatypes of Graph, Object, Port, Property, Role
Relationship). Following presents, a description of
metatypes of Object, Property, Role, Relationship defined
in this paper.

1)Create object and property meta-model: The Object
Tool and Property Tool are used to create object and
property. The object and property description are as shown
in Table I.

TABLE I. DEFINITION AND DESCRIPTION OF OBJECT AND PROPERTY

Class

Name[Obj] string Input Field The name of Class, which must be unique
Marks string Fixed List Mark value, used to distinguish representation types of Class

SubClass Collection Item type = Object Used to define multiple property values of this Class
SetFacet Collection Item type = Object Used to define constraint of multiple property values of this Class

Description Text Brief introduction of Class, can help the model creator to understand

SubClass

Name[sub] string Input Field The name of subclass
Type string Editable List Subclass type can be only built-in type or simpleType

InitialValue string Input Field Initial value of subclass
MinOccurs Number Use to set the minimal occurrence times of subclass

MaxOccurs string Editable List Use to set the maximal occurrence times of subclass
IsAttribute Boolean Used to set whether the subclass is the main attribute

SetFacet
CTmark string Input Field Corresponding to restriction |list | union value

Base string Input Field Use to set the name of data type based on
Facet Collection Item type = Object Set constraint for deriving new types via constraining

Facet FacetList string Fixed List Set 11 constraints in Schema
Values string Input Field Set the value of corresponding constraint

There are four Object types of Class, SubClass and
SetFacet, Facet. Wherein, the last three types
simultaneously serve as the Property type of Object type
set to describe the details of Class. The Property of
SubClass and SetFacet is the Object type set of Class.
SubClass defines multiple Property values and corresponds
to the Property or subelement in Schema. SetFacet
corresponds to the simple data type in Schema. The
Property of Facet is the Object type set of SetFacet to
derive new simple data types via constraining.

2)Create Relationship and Role meta-model: The
Relationship and Role are created using Relationship Tool
and Role Tool. The correspondence between Relationship
and Role is as shown in Table II.
TABLE II. THE CORRESPONDENCE BETWEEN RELATIONSHIP AND ROLE

Relationship Name Role From Name Role To Name
Association Association From Association To
Reference Reference From Reference To

Aggregation Aggregation From Aggregation To

319

A Relationship corresponds to two Roles and jointly
expresses a connection relationship, and expression can be
formalized into: .A~RoleA>Relationship~RoleB.B

.A and .B represent the instances of two different Class
building blocks in the meta-model. ~ RoleA and ~ RoleB
respectively represent different Roles of the two instances
.A and .B in the relationship. >Relationship represents the
relationship classification of Objects A and B. If .A and.B
are the same Class instance, this means they have a
relationship relation in themselves.

Association Relationship is used to describe the data-
relation association between the building blocks of meta-
model, and is mainly embodied in the reference
relationship of data items between elements in systems
such as XML. It uses key and keyref for constraining,
which is similar to foreign key constraint in database. It is
a one-way connection relationship.

Reference Relationship is used to describe the data
type reference relation between building blocks of meta-
model, and is mainly embodied in the relation of reference
of data type by the elements in systems such as XML. For
the simpleTpye and complexType that need multiple
references, the base Class can be defined before using
reference relationship for extension definition or direct
reference.

Aggregation: The generalized aggregation relationship
is used to describe the inclusion relation between building
blocks of meta-model, and is mainly embodied in the
inclusion semantic meaning between elements in system
such as XML.

The Class, Relationship and Role are expressed in
graph visualized, i.e. defining the graphic symbols of
modeling elements in the model diagram, as shown in
table III. The visualization of property is bound in Class.

TABLE III. THE GRAPHIC SYMBOLS OF MODELING ELEMENTS

Modeling
element Class Reference Aggregation Association

Graphical
representatio

B. XML conceptual modeling tool
To establish XML conceptual model for the language

that supports XML conceptual modeling needs the
modeling tools supporting this language. The XML
conceptual modeling language is set to Graph of
MetaEdit+ via "Bindings", and multiple defined generators
are written into this Graph, then the XML modeling tool is
implemented, and saved in two formats of .met or .mxm.
In using this tool, the Import function can be used to
import the files in the above two formats to the MetaEdit+
tool to import XML conceptual modeling too. To create an
instance of a graph can create a XML conceptual model,
and to create instances of multiple Graphs can create
multiple XML conceptual models. Fig.2 shows the
structural information model of an institute's personnel
expressed by this tool.

C. XML model transformation tool
In MetaEdit+, the model transformation tool is

implemented by defining manifold generators. The
definition of generator is implemented via writing of
MERL code by generator editor. The model transformation
generator in this paper is the main generator named as

"ModelTransformation", which contains six subgenerators.
The structural diagram is as shown in Fig.3.

Figure 2: The XML conceptual model with "institute"

as module

Figure 3 The structural diagram of
"ModelTransfromation" main generator

The subgenerator “_MarkedCheck” is used to detect
the effectiveness of model to guarantee the transformed
XML Schema document is effective. Subgenerator
"_DATA" is used to transform data object and save them
as "DATA.xsd". It also includes five subgenerators, whose
functions are to realize transformation according to the
difference of mark value. The subgenerator "_element" is
used to realize transformation of root element. The
subgenerators "_key" and "_keyref" are used to define the
scope and uniqueness of main property between associated
objects. The subgenerator “_complexType” is used to
transform content object. It also includes two
subgenerators, whose largest difference is whether they
extend or constrain the object of referenced data type, the
corresponding mapping rules and conversion algorithms
are different either. The content transformed by the
subgenerators "_element", "_key", "_keyref" and
"_complextype" will be written into the .xsd document
named after the name of corresponding Class in
"_element".

The above describes the basic corresponding
transformation functions of multiple generators. The
subgenerator “_complexTypeHasRef” realizes the mark
Class of <complexType>. This Class can possess manifold
relationships. When it possesses the association
relationship, the main property of the associated end needs
to be taken as an " foreign key" to be transformed into own

320

subelement. When it possesses the generalized aggregation
relationship, it is needed to take the Class of part end as
one of its subelement to form a parent and child element
relation. When it possesses the reference relation, it is
needed to take the referenced Class as the base Class of
own data type to define constrained derivation or extended
derivation. Following will describe a relatively key
transformation algorithm in this paper. The transformation
algorithm for subgenerator "_complexTypeHasRef" is as
follows:

 _complexTypeHasRef()

1 foreach .Class //Ergodic Class

2 if :marks='complexType' then //Judgment mark

3 if Reference!='' //Whether there is a reference relationship

4 base=name //The Class name of reference serves as the base Class

5 end

6 if Association!='' //Whether there is an association relationship

7
 //Add the main property of the associated end as a new element

element=Object().subclass().attribute()

8 end

9 if Aggregation!='' //Whether there is an aggregation relationship

10
 //Add the Class name of the part end as a new element

element=Object().name

11 end

12 subClass() //Property of self Class and element output

13 end

 The generator is imported into the XML conceptual
modeling tool to generate XML modeling tool. Now the
tool is provided with two major functions of conceptual
modeling and model transformation.

IV. APPLICATION CASE ANALYSIS ON THE TOOL
The establishment of conceptual model is based on the

actual business demands. This case is based on an
institute's personnel structural information to create a
conceptual model chart of the basic information of the
institute, as shown in Fig.2.

The marks of the conceptual model are defined.
Reference [9] presents the UML extension definition,
based on which, the marks of XML conceptual model is
defined, and the "Marks" generator is used to
automatically mark the model. One mark corresponds to
one concept in PSM model. The application of one mark
by one Class in PIM model just designates the
transformation mode of this Class. The marked XML
conceptual model is as shown in Fig.4. After running the
"ModelTransformation" generator, the marked conceptual
model generates two XML Schema documents of
DADA.xsd and College.xsd, as shown in Fig.5

V. CONCLUSION
To make up for the drawbacks of special XML

modeling tools available in the market to facilitate the
exchange and communication between the domain experts
and XML designers and improve the development
efficiency of XML, the paper defines a XML conceptual
modeling language and implements a graphical modeling
tool supporting this language based on the MetaEdit+

meta-modeling tool to help the developers to establish
XML conceptual model and transform models. Lastly, the
whole process of model-driven XML schema design
method is introduced via a case. The research findings of
the paper are favorable for the developers to improve the
efficiency and effect of XML design and development,
and can help the domain experts to establish the XML
Schema document of own domains via visualized
modeling tools.

Figure 4: Marked XML conceptual model

Figure 5: Generated XML Schema document

REFERENCES
[1] Lóscio B F, S algado A C , Galvão L R. Conceptual Modeling of

XML S chemas. Proceeding s of W IDM03, ACM Press , 2003.pp.
102-105

[2] Chin S M, Haw S C, Lee C S. X-CM: A Conceptual Modeling for
XML Databases ICCCM: Proceedings of International Conference
on Computer Communication and Management, 2011.pp.59-63

[3] Ne�aský M. Conceptual Modeling for XML, volume 99 of
Dissertations in Database and Information Systems Series. IOS
Press/AKA Verlag, January 2009. pp.527-549

[4] Liu H X, Lu Y S, Chen M. An XML conceptual modeling:XUML.
Computer Science, Vol. 34, No. 1, January 2007, pp.88-91.

[5] MetaCase. MetaEdit+ Verion5.0 User’s Guide.
http://www.metacase.com/support/50/manuals/meplus/Mp.html
Accessed 28 September 2017.

[6] Gronback R. Eclipse Modeling Project Addison-Wesley
Professional, 2009.

[7] Cook S, Jones G, Kent S, et al. Domain-specific Development
with Visual Studio DSL Tools. Addison-Wesley Professional,
2007.

[8] LIU H,MA Z Y, SHAO W Z.Progress of Research on
Metamodeling. Journal of Software, Vol.19, No.6, June 2008,
pp.1317�1327

[9] Carlson Din, Modeling XML applications with UML, Wesley
Press ,2001.

321

