
Convergence Detection of Asynchronous Iterations based on Modified Recursive
Doubling

Qinmeng Zou and Frédéric Magoulès

Mathematics in Interaction with Computer Science
CentraleSupélec, Université Paris-Saclay

Paris, France
frederic.magoules@hotmail.com

Abstract—This paper addresses the distributed conver-
gence detection problem in asynchronous iterations. A mod-
ified recursive doubling algorithm is investigated in order
to adapt to the non-power-of-two case. Some convergence
detection algorithms are illustrated based on the reduction
operation. Finally, a concluding discussion about the imple-
mentation and the applicability is presented.

Keywords-recursive doubling; asynchronous iterations;
convergence detection; message passing interface;

I. INTRODUCTION

Consider the following linear system

Ax = b,

where A ∈ R
n×n and b ∈ R

n. A splitting

A = M −N,

yields an iterative scheme

xk+1 = Txk + c,

where k ∈ N, T = M−1N and c = M−1b. Generally,

this scheme is well suited for parallel computing of the

form

xk+1
i = Tix

k + ci, i ∈ {1, . . . , p},
where p is the number of processors. Here, xi and ci might

be two values or two smaller vectors. Similarly, Ti might

be a row vector or a smaller matrix. They are distributed in

different processors. However, a specific point is required

at the end of each iteration to synchronize between the

processors. The waste of time may be significant in

the case of unbalanced working load and node failure,

which gives rise to the asynchronous iterative methods.

The asynchronous iterative scheme has been proposed

by Chazan and Miranker [1] for the solution of linear

equations and generalized by several researchers (see, e.g.,

[2], [3], [4], [5]) for the general problem

xk+1 = f
(
xk

)
,

where f is a fixed point mapping. The asynchronous

iterative scheme is shown as follows

xk+1
i =

{
fi

(
x
τi,1,k
1 , . . . , x

τi,p,k
p

)
, i ∈ P k,

xk
i , i /∈ P k,

where τi,j,k ≤ k is a sequence of iterations with retards for

each element j in each processor i, and P k ⊂ {1, . . . , p}

is a sequence of subsets of processor numbers. In this

case, processors are not required to wait for receiving

all messages and allowed to keep on their own pace. We

often add the following conditions to better investigate the

chaotic process{∣∣{k ∈ N | i ∈ P k
}∣∣ = +∞, ∀i ∈ {1, . . . , p},

lim
k→+∞

τi,j,k = +∞, ∀i, j ∈ {1, . . . , p},

where |.| is the cardinality of a set that measures the

number of elements. It means that no processors should

be abandoned forever and more and more recent values

should be used.

Asynchronous iterative algorithms must terminate after

a finite number of iterations, as suggested in [6]. Thus,

a practical implementation involves a set of admissible

solutions S, such that

x∗ ∈ S,

where x∗ is a solution vector. We would like to find

a vector x̄ established by the components from each

processor, and we have to evaluate x̄ ∈ S. If true, then

x∗ = x̄; otherwise, continue the computation, as well

as the evaluation. Thus, the termination condition can be

expressed by a residual evaluation

‖f (x̄)− x̄‖ < ε, ε > 0,

where ‖.‖ is a norm, ε is a well-chosen threshold. x̄ is

given as an arbitrary combination of local components

x̄ =
(
xk1
1 , . . . , xkp

p

)
, k1, . . . , kp ∈ N.

The major problem of termination detection is how to

collect xki
i and execute the evaluations.

Recently, several developments for the asynchronous

iterations have been proposed in different domains, such as

domain decomposition methods [7], [8], [9], convergence

detection methods [10], [11], and programming libraries

[12], [13]. In this paper, we propose a modified recursive

doubling algorithm applied to the non-blocking collective

communication, which is addressed in the next section.

In Section III, we present some convergence detection

strategies based on our new method. Finally, further dis-

cussion is given in Section IV about the implementation

and performance.

288

2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science

978-1-5386-7445-1/18/$31.00 ©2018 IEEE
DOI 10.1109/DCABES.2018.00081

P0 P1 P2 P3 P9 P8 P7 P6 P5 P4

Figure 1. Backward shift

P0 P1 P2 P3 P9 P8 P7 P6 P5 P4

Figure 2. Recursive doubling

P0 P1 P2 P3 P9 P8 P7 P6 P5 P4

Figure 3. Forward shift

II. MODIFIED RECURSIVE DOUBLING

Recall that p is the number of processors. We define a

μ0 ∈ N such that

p0 = 2μ0 ≤ p < 2μ0+1,

where p0 denotes a pivot. Note that for the parallel

iterative methods, the Allreduce function is very useful

because we need to collect residual values from different

processors. For the asynchronous iterations, however, the

collective operations should be not only efficient, but also

performed in a non-blocking way.

Traditional recursive doubling (see, e.g., [14]) is one

of the possible algorithms for the Allreduce func-

tion. It involves a power-of-two number of processors,

which adapts only to some special situations. We consider

a modified version of recursive doubling, in which a

backward shift and a forward shift are required in the

general case. The first step is sending data from the extra

processors to the first several processors, called backward

shift, illustrated in Figure 1. During this process, we

proceed the corresponding arithmetical operations, such

as summation, maximization, and minimization. Then, the

recursive doubling algorithm is proceeded only within the

power-of-two processors to exchange data and execute

reduction operation as shown in Figure 2. Finally, a

forward shift is proceeded to send back the final data to

the extra processors as illustrated in Figure 3, which is

indeed the inverse operation of the first shift.

Asynchronous iterations require non-blocking commu-

nication, which can be implemented is several ways. For

example, we might prefer to create a new thread for a

desired collective function, and then design its behavior

by some external interface functions; we could also create

BackwardShiftStart

BackwardShiftEnd
Handling shift msg.

reception

UpdateStart
Handling recursive msg.

reception

UpdateEnd

[i < p - p0]

when (�recursive msg. received) /
Perform collective op.

j = j + 1

/ j = 0

Finalize

ForwardShift
Handling shift msg.

reception

when (shift msg. received�) /
Perform collective op.

[else�]

[i >= p0�] /
Send shift msg.

when (shift msg. received�)

/�Send recursive msg.

[else�] [j < μ0]

[i < p - p0] /
Send shift msg.

[else�]

Figure 4. Statechart of a non-blocking Allreduce function

a state-based interface that should be invoked repeatedly

in user applications, in which some lightweight functions

act as different states in the life cycle of a collective

operation. Here, we adopt the latter and give an example

of state diagram depicted in Figure 4, which implements

a non-blocking Allreduce function. From the picture,

we can see that each cycle begins with the backward

shift operation. If the rank of processor belongs to the

extra range, it sends data and enters into the forward shift

state. In other cases, the relative processors must enter

into the updating loop, which involves all the processors

having a rank smaller than the pivot p0. Finally, a forward

shift process is executed to gather the final results to the

non-power-of-two processors. Notice that the first several

processors within the exponential area engage as well in

the shift subroutines.

The amount of data exchanged by each processor

depends on the way of collecting residual values. We

need exactly log p0 + 2 steps to finish a cycle in the

synchronous case. If there is only a floating point residual

value being exchanged in each processor, then totally

p0 log p0 + 2(p − p0) data are exchanged in each cycle.

In asynchronous mode, this number keeps the same.

However, processors wait no longer the others and conduct

iterations on their own pace.

III. CONVERGENCE DETECTION ALGORITHMS

We could also develop other collective operations based

on the backward-forward recursive doubling algorithm. In

practice, however, these functions are rarely used in the

context of asynchronous iterations because we expect to

exploit the most recent values as much as possible, which

favors the point-to-point operations like Send and Recv
functions. On the other hand, the residual collection re-

quires intrinsically an Allreduce operation. Therefore,

we address the convergence detection problem in terms of

the non-blocking reduction.

289

We consider first an inexact residual collection strategy

that involves only the Allreduce function, depicted as

follows.

res_norm = res_thresh
res_loc = res_thresh
res_glb = res_thresh
flag = 1
while res_norm ≥ res_thresh do

zi = xi

Compute(xi, Ai, bi, x)
Send(xi)
Allreduce(res_glb, res_loc, flag)
if flag then
res_norm = res_glb
res_loc = ‖xi − zi‖∞
flag = 0

end if
Recv(x)

end while

We mention here that although such algorithm is not exact,

it might be efficient due to the simplicity and still has an

acceptable precision. In the algorithm, we take the max-

imum norm as an example to compute residual and omit

some function parameters, e.g., the arithmetic operation

of reduction. Unlike the message-passing standard [15],

our implementation is based on the state that requires the

function invocation repeatedly, not just a request handler.

The Compute function could be any appropriate iterative

algorithm, such as Jacobi method or gradient method (see,

e.g., [5]). This is inexact because res_loc might not

be monotone all over the iterations. Sometimes global

residual indicates a convergence signal but local residual

rises instead due to the retard term.

Now we give a second version that leads to an exact

solution in view of the residual collection, shown as

follows.

res_norm = res_thresh
sflag = 1
eflag = 0
while res_norm ≥ res_thresh do
Compute(xi, Ai, bi, x)
Send(xi)
if sflag then
Snapshot(x̄, xi, eflag)
if eflag then

zi = x̄i

Compute(x̄i, Ai, bi, x̄)
res_loc = ‖x̄i − zi‖∞
sflag = 0
eflag = 0

end if
else
Allreduce(res_glb, res_loc, eflag)
if eflag then
res_norm = res_glb
sflag = 1
eflag = 0

end if
end if
Recv(x)

end while
This algorithm involves a distributed snapshot process that

generates a consistent solution buffer [16] (see also, e.g.,

[6], [11]). The snapshot algorithm first sends xi to the

processors that depend on xi. In this situation, we call

them dependent neighbors; then, processor i begins to

wait for the necessary data from some other processors,

which are called essential neighbors [5]; finally, it returns

a collection of essential data that are used for the residual

computation. Here we simplify the process by assuming

that the communication follows an “all-to-all” pattern,

which implies that both dependent neighbors and essential

neighbors are all the other processors so that they are the

same. For the general case, the algorithm would be similar.

We first set sflag = 1 to enable snapshot process. Then,

we compute res_loc when snapshot finishes and set all

sflag = 0, which enables the reduction process. Finally,

Allreduce is called repeatedly that is exactly the first

algorithm, except that this time we keep a set of consistent

data that provides an exact result.

IV. FURTHER DISCUSSION

In this section we first discuss the implementation

issue of the convergence detection algorithms. Here we

take the message passing interface (MPI) standard as an

example. Notice that in order to implement a non-blocking

function, we should execute the relative instructions in

an independent thread, which involves an explicit con-

struction or an implicit invocation. We choose the latter

and invokes the non-blocking point-to-point instructions

to exchange messages. We can use the external interface

functions to generate a non-blocking function under the

name of generalized requests. In current version, the

two main functions are MPI_Grequest_start and

MPI_Grequest_complete. In the next version, these

functions will be redefined in order to provide a more

flexible interface.

Notice that if the number of processors falls on the

power-of-two case, the iterations in Figure 4 will jump

over all the shift steps appropriately. Such case has been

proven very efficient in several situations [14], whereas our

algorithm can benefit from it as well. On the other hand,

our Send operation is implemented in a blocking mode

because it causes rarely a negative impact in practice on

the efficiency. We could avoid wasting time by switching

it to non-blocking mode without changing so much codes.

Finally, we mention here that our algorithm is suitable

for a relatively “close” distributed environment; otherwise,

there might be a great deal of communication operations

exchanging data between long-distance nodes, which in-

creases the transfer time. In such case, a tree-based algo-

rithm is preferred. However, asynchronous iterations may

not exhibit advantages in a completely local cluster, even

perform sequentially like synchronous scheme with much

more ongoing messages. Consider a two-point boundary

290

10 20 30 40 50 60 70 80

p

1.05

1.1

1.15

1.2

1.25

1.3

1.35

tim
e

Figure 5. Asynchronous iterations in a concentrated environment

value problem with an asynchronous relaxation solver [1].

We implement the mathematical operations by Alinea [17]

and the asynchronous iterations by JACK [13], which have

been proven very efficient for the large-scale scientific

computing [18], [19], [20]. The finite difference scheme

is adopted for the discretization. The matrix dimension

n = 10000 and b is chosen arbitrarily from −10 to

10. Results are shown in Figure 5. We observe that the

iteration curve shows synchronous behavior that exists

a bottleneck within a specific range of processors. The

experiment was performed on a cluster of Intel Xeon CPU

E5-2670 v3, connected by FDR Infiniband network with

56 Gbit/s, which is concentrated and favors synchronous

iterations. Furthermore, an “all-to-all” algorithm generates

huge amounts of messages in the asynchronous mode,

which makes the network too messy to be efficient. In

this case, we prefer the traditional synchronous iterative

scheme, even for large-scale parallel computing.

ACKNOWLEDGMENT

This work was supported by the French national pro-

gramme LEFE/INSU and the project ADOM (Méthodes

de décomposition de domaine asynchrones) of the French

National Research Agency (ANR).

REFERENCES

[1] D. Chazan and W. Miranker, “Chaotic relaxation,” Linear
Algebra and its Applications, vol. 2, no. 2, pp. 199–222,
1969.

[2] J.-C. Miellou, “Algorithmes de relaxation chaotique à re-
tards,” ESAIM: Mathematical Modelling and Numerical
Analysis, vol. 9, no. R1, pp. 55–82, 1975.

[3] G. M. Baudet, “Asynchronous iterative methods for multi-
processors,” J. ACM, vol. 25, no. 2, pp. 226–244, 1978.

[4] M. N. El Tarazi, “Some convergence results for asyn-
chronous algorithms,” Numerische Mathematik, vol. 39,
no. 3, pp. 325–340, 1982.

[5] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed
Computation: Numerical Methods. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1989.

[6] S. A. Savari and D. P. Bertsekas, “Finite termination of
asynchronous iterative algorithms,” Parallel Computing,
vol. 22, no. 1, pp. 39–56, 1996.

[7] F. Magoulès, D. B. Szyld, and C. Venet, “Asynchronous
optimized Schwarz methods with and without overlap,”
Numerische Mathematik, vol. 137, no. 1, pp. 199–227,
2017.

[8] F. Magoulès and C. Venet, “Asynchronous iterative sub-
structuring methods,” Mathematics and Computers in Sim-
ulation, vol. 145, pp. 34–49, 2018.

[9] F. Magoulès, G. Gbikpi-Benissan, and Q. Zou, “Asyn-
chronous iterations of Parareal algorithm for option pricing
models,” Mathematics, vol. 6, no. 4, pp. 1–18, 2018.

[10] J.-C. Miellou, P. Spiteri, and D. El Baz, “A new stop-
ping criterion for linear perturbed asynchronous iterations,”
Journal of Computational and Applied Mathematics, vol.
219, no. 2, pp. 471–483, 2008.

[11] F. Magoulès and G. Gbikpi-Benissan, “Distributed con-
vergence detection based on global residual error under
asynchronous iterations,” IEEE Transactions on Parallel
and Distributed Systems, vol. 29, no. 4, pp. 819–829, 2018.

[12] F. Magoulès and G. Gbikpi-Benissan, “JACK: an asyn-
chronous communication kernel library for iterative algo-
rithms,” The Journal of Supercomputing, vol. 73, no. 8, pp.
3468–3487, 2017.

[13] F. Magoulès and G. Gbikpi-Benissan, “JACK2: An MPI-
based communication library with non-blocking synchro-
nization for asynchronous iterations,” Advances in Engi-
neering Software, vol. 119, pp. 116–133, 2018.

[14] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization
of collective communication operations in MPICH,” The
International Journal of High Performance Computing Ap-
plications, vol. 19, no. 1, pp. 49–66, 2005.

[15] Message Passing Interface Forum, “MPI: A message pass-
ing interface standard,” International Journal of Supercom-
puter Applications, vol. 8, no. 3/4, pp. 159–416, 1994.

[16] K. M. Chandy and L. Lamport, “Distributed snapshots:
Determining global states of distributed systems,” ACM
Transactions on Computer Systems, vol. 3, no. 1, pp. 63–
75, 1985.

[17] F. Magoulès and A.-K. Cheik Ahamed, “Alinea: An ad-
vanced linear algebra library for massively parallel com-
putations on graphics processing units,” The International
Journal of High Performance Computing Applications,
vol. 29, no. 3, pp. 284–310, 2015.

[18] F. Magoulès, A.-K. Cheik Ahamed, and R. Putanowicz,
“Auto-tuned Krylov methods on cluster of graphics process-
ing unit,” International Journal of Computer Mathematics,
vol. 92, no. 6, pp. 1222–1250, 2015.

[19] F. Magoulès, A.-K. Cheik Ahamed, and R. Putanowicz,
“Optimized Schwarz method without overlap for the grav-
itational potential equation on cluster of graphics process-
ing unit,” International Journal of Computer Mathematics,
vol. 93, no. 6, pp. 955–980, 2015.

[20] F. Magoulès, A.-K. Cheik Ahamed, and A. Suzuki, “Green
computing on graphics processing units,” Concurrency and
Computation: Practice and Experience, vol. 28, no. 16, pp.
4305–4325, 2016.

291

