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Abstract—It is a key issue to handle many tasks efficiently in 
cloud computing at low cost. For the cloud computing 
scheduling problem, to efficiently and reasonably assign a 
large number of tasks submitted by users to cloud 
computing resources, a task scheduling algorithm (IDE) 
based on improved differential evolution is proposed to 
consider both task completion time and cost dual objectives. 
The algorithm introduces an immune operator into the 
traditional differential evolution algorithm. According to the 
vaccination probability, the population is vaccinated during 
the iterative process to speed up the convergence of the 
algorithm. Introducing the judgment mechanism on the 
selection strategy can shorten the running time of the 
algorithm and effectively improve the shortcomings of the 
standard differential evolution algorithm with slow 
convergence speed. The original fixed scaling factor F 
becomes adaptive, which helps to increase the diversity of 
the population. The simulation experiment of the proposed 
algorithm is performed on the cloud computing platform 
CloudSim. Comparing the IDE algorithm with the 
traditional differential evolution algorithm, genetic 
algorithm and Min-Min algorithm, the results show that IDE 
algorithm task completion time is short, which improves the 
utilization of cloud computing resource pools, and the cost of 
computing resources in a similar period of time is low. 

Keywords-cloud computing; task scheduling; differential 
evolution; vaccination 

I. INTRODUCTION 

The concept of cloud computing has become a research 
hotspot since its introduction. As an emerging technology, 
cloud computing can be regarded as the development of 
distributed computing, parallel computing, and grid 
computing, and is realized in the commercial field. In 
order to meet the needs of users, we can provide high-
performance, stable computing and storage-related 
services for users. Some key technologies in cloud 
computing have emerged. 

The core of cloud computing is the virtual resource 
pool, including high-performance processors and stable 
storage structures. The existing cloud computing model 
framework is commonly used in Google's cloud computing 
platform and cloud computing network applications, IBM's 
"Blue Cloud" platform products and Amazon's elastic 
computing cloud [1].Although these platforms can meet 
the basic needs of a large number of users, the efficient 
processing of massive cloud tasks is still the key and 
difficult point in cloud computing. At present, in order to 

meet the needs of a large number of users, taking into 
account the time and cost of the user to submit the task, the 
researchers proposed a variety of cloud computing task 
scheduling algorithms, but these algorithms are still not 
efficient enough when dealing with massive tasks [2,3,4]. 
Therefore, it is of great significance to optimize the 
existing cloud computing task scheduling algorithm. 

Based on the above background, in order to make 
resource utilization higher in cloud computing, this paper 
proposes a cloud computing task scheduling algorithm 
(IDE) based on differential evolution algorithm which 
considers both time and cost. In the initial stage of the 
evolution of the algorithm, immune operators were added, 
and the traditional differential evolution algorithm was 
improved by the vaccination method. At the same time, the 
adaptive scaling factor F was designed to solve the 
problems of premature convergence, slow convergence, 
and difficulty of parameter setting of traditional 
differential evolution algorithms. The main goal is to 
shorten the task completion time as much as possible, and 
to minimize the cost of the computing node while 
satisfying the needs of the majority of users, so as to 
achieve dual goals of time and cost optimization. At the 
same time, through the experimental simulation, the 
proposed algorithm is compared with the basic differential 
evolution algorithm and other scheduling algorithms to 
verify the effectiveness of the proposed algorithm. 

II. PROBLEM DESCRIPTION OF CLOUD COMPUTING 
TASK SCHEDULING

Nowadays, most cloud computing platforms use the 
Map/Reduce programming model proposed by Google to 
perform parallel computing and processing on large-scale 
data sets. Map/Reduce is mainly divided into two phases. 
First, the received large-scale data submitted by the user is 
divided into many small sub-tasks, and these sub-tasks are 
then allocated to the resource set on the cloud server 
through the corresponding scheduling method. This stage 
of splitting is called the Map stage. After the computing 
resources have processed these sub-tasks and then 
integrated through the Reduce stage, the final result after 
processing is fed back to the user [5]. By dividing the task 
by such a model and simplifying the complex problems by 
means of synchronous parallel computing, the execution 
efficiency of tasks is improved [6,7,8]. 

The cloud computing platform mainly has two levels. 
The basic cloud computing platform model is shown in 
Figure 1. The requirements submitted by users classify 
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tasks through the Map phase. The first level is to assign n 
tasks efficiently to m computing resources in a resource 
pool through a reasonable algorithm or strategy, and 
perform tasks on computing resources in a certain order of 
submission [9]. The second level of scheduling is the 
mapping between computing resources and physical 
machine entities. At this level, the main task accomplished 
is to optimize the virtual resource pool available to the 
cloud platform through the task scheduling strategy after 
the splitting of small child tasks. This article focuses on the 
scheduling problem at the first level. 

Cloud task
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Fig 1 Cloud computing task scheduling model 
Cloud computing needs to provide many users with 

different services at the same time. It needs to consider the 
response time of each user and also consider the cost of 
providing services for different users [10]. The existing 
algorithms only consider the shortest possible execution 
time of the task, and do not take into account the fact that 
some computing resource processing problems have a 
short time, but the cost is very high. Therefore, this paper 
proposes a task scheduling algorithm that reduces the task 
completion time while reducing the service cost of core 
computing resources. 

This paper makes the following assumptions for cloud 
computing task scheduling: 

(1) The completion time of a task on a computing 
resource node is known, the number of tasks is N, and the 
number of computing resources is M, then a matrix of 
N*M can be used to represent the completion time of a 
task on each computing resource, and is recorded as a time 
cost matrix. 

(2) The cost required by each computing resource node 
per unit time is known. Then, an N*M matrix can be used 
to represent the cost per unit of time required for the task 
to execute on each computing resource, which is denoted 
as the cost overhead matrix. 

(3) The number of cloud computing tasks is much 
larger than the number of computing resources, and the 
network delay and transmission time are ignored. 

III. IMPROVED DIFFERENTIAL EVOLUTION TASK 
SCHEDULING ALGORITHM

A. Basic Differential Evolution Algorithm 
Differential Evolution (DE) was first proposed by 

Storn and Price in 1995. It is mainly used to solve the real 
optimization problem [11]. It belongs to a group-based 
adaptive heuristic global search algorithm. Since DE's 
mutation operation is relatively simple, it can be widely 
applied in many fields such as data mining, neural network, 
and electromagnetics based on the rational modification of 
DE mapping with solving problems. On the discrete task 
scheduling problems such as cloud computing, the 
necessary improvements can also be effectively applied. 

The core idea of DE is to perform a difference vector 
between two randomly generated populations, then 
generate a new intermediate generation after reasonable 
processing, and then use the greedy algorithm to select the 
best solution, and then iterate until the algorithm converges 
[12,13]. When the traditional DE algorithm cross-mutates, 
it is very likely that the global searching ability is poor 
because of the selection of the mutation operator. At the 
same time, the fine individuals produced by the new 
mutations may be exchanged during the crossover process, 
increasing the amount of calculations and iterations. To 
solve these drawbacks, this paper proposes an improved 
differential evolution algorithm that introduces immune 
operators to improve the convergence speed of the 
algorithm. 

The general flow of the DE scheduling algorithm is as 
follows: 

Step 1: Determine the parameters and variables in the 
algorithm based on the size of the problem. 

Step 2: Randomly generate populations and initialize 
corresponding parameters. 

Step 3: Calculate the initial population fitness value 
based on the goal of the problem. 

Step 4: Determine if the resulting value satisfies the set 
termination condition or the maximum number of 
iterations. If yes, the algorithm is terminated, and 
conversely, execution continues. 

Step 5: Individuals of the population undergo 
mutations and crossovers to produce intermediate 
populations. 

Step 6: Calculate the fitness value of the middle 
population. 

Step 7: According to the selection strategy, individuals 
satisfying conditions are selected among the intermediate 
population and the original population. 

Step 8: Add one iteration, skip to step 4. 

B. Population Coding 
The traditional coding method in cloud computing task 

scheduling problem is based on the coding of computing 
resources. Each computing resource has a task sequence 
that needs to be executed.For example, there are 7 subtasks 
(N1, N2, N3, N4, N5, N6, N7) and 3 available resources 
(M1, M2, M3). The corresponding individual codes are [1, 
3, 7, 0, 2, 5, 6, 0, 4] means that the N1, N3, and N7 tasks 
run on M1; N2, N5, and N6 tasks run on M2; N4 tasks run
on M3; 0 indicates the identifier of the interval between 
computing resources symbol. 

When using differential evolution algorithm for cross-
mutation, this coding method has many disadvantages. For 
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example, when performing mathematical operations, it 
may exceed a reasonable range value. At the same time, it 
needs to determine whether it is an interval character, 
which increases the difficulty of parameter setting. 
Therefore, taking the above hypothesis as an example, the 
coding scheme corresponding to the encoding method used 
in this paper is [1,2,1,3,2,2,1], where the first one indicates 
that task N1 runs on M1; second A bit of 2 indicates that 
task N2 is running on M2; and so on, the seventh bit 
indicates that task N7 is running on M1. The 
corresponding decoding is: M1 runs on N1, N3, N7; M2 
runs on N2, N5, N6; M3 runs on N4. This kind of coding 
method does not need to consider too many parameters in 
the cross-mutation. If there is a situation beyond a 
reasonable range, it can be rationalized by a unified 
method, which reduces the amount of calculation and 
makes it easier to obtain decoding results. 

C. Initial Population Generation 
Taking the initial population size as S, the number of 

tasks after all the tasks submitted by the user are properly 
handled is N, and the number of computing resources in 
the cloud computing is M, and the corresponding coding 
description according to the population initialization is: S 
sequences are randomly generated. Each code sequence is 
N in length, the range of each parameter in the sequence is 
[1, M]. 

D. Fitness Value Function 
In order to make the improved algorithm suitable for 

cloud computing task scheduling problem, it is necessary 
to model the problem and design the corresponding fitness 
value function. The general algorithm only considers the 
execution time when it comes to cloud computing 
scheduling problems, but often ignores the cost 
requirements. Therefore, according to the characteristics of 
the cloud computing task scheduling problem and the 
needs of the majority of users, it is proposed that this 
algorithm is set to meet the dual-objective fitness value 
function of the calculation cost and task scheduling 
completion time. 

According to the known time cost matrix, the 
completion time of each virtual resource execution task
can be calculated, the set of cloud task assigned to the 
computing resource i is defined as Ri, and the task 
completion time of the computing resource is  , then the 
completion time of all tasks is AT ,which is the maximum 
value of the task completion time for each computing 
resource, as shown in (1). 

� �maxAT ET i�                          (1) 
Define the fitness value function that only considers 

the task completion time, as shown in (2). 
timeF AT�                                   (2) 

According to the cost-cost matrix, the cost of a task 
spent on different computing resources per unit time can 
be known as , and the completion time of the task on the 
computing resource is known, then the total cost of the 
task can be obtained by (3). 

1
C *

N

i
A ET i CN i

�

� �                      (3) 

Because it is necessary to consider both time and cost 
goals, the cost function and time function vary greatly, and 

the difference may not be in the same order of magnitude. 
Therefore, the total cost of the task completion AC needs 
to be reasonably adjusted to FAC, as shown in (4). 

lg( )
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� �
� �� 	

�                             (4) 

It is intended to define a fitness value function that 
only considers costs, as shown in (5). 

cos tF FAC�                                     (5) 
Therefore, (2) and (5) define the comprehensive fitness 

value function that considers the task completion time and 
cost, as shown in (6). 

costime tFitness a F b F� 
 � 
                       (6) 
In equation (6), a and b are used as the adjustment 

parameters, ranging from [0,1], and a+b=1, which is used 
to control and adjust the consideration of task execution 
time and cost. There are two extreme special values. When 
a=1 and b=0, the comprehensive fitness function becomes 
the fitness function that only considers time. When a=0 
and b=1, the comprehensive fitness function becomes the 
fitness function that only considers the cost. 

E. Mutation Operation 
The basic operation of generating descendants using 

differential evolution algorithms is mutation and crossover. 
There are multiple mutation strategies in the differential 
evolution algorithm. The general form of the mutation 
strategy chosen in this paper is represented as DE/x/y/z, 
and DE represents the differential evolution algorithm. x 
denotes whether the reference individuals participating in 
the variation process and the vector recombination are 
randomly generated individuals or optimal individuals in 
the current population; y indicates the number of 
difference vectors involved in the reorganization; z 
indicates whether the reorganization adopts a binomial 
reorganization method or an index reorganization method. 
The variation used in this paper is shown in (7), namely 
DE/rand/1/bin. 

1 2 3( )iV N F N N� � 
 �                       (7) 
Among them, N1~N3 represent any randomly 

generated individuals in the current parent population. N1 
is a randomly generated reference entity and F is the 
scaling factor in the formula, which ranges from [0, 2]. By 
formula (7), it can be known that a smaller F is favorable 
for accelerating the convergence speed of the algorithm, 
and a larger F is favorable for a global search, so that the 
algorithm jumps out of the local optimum to prevent over-
exploitation. Therefore, this paper proposes to set the 
adaptive F, as shown in (8). 

1
2
11
2
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F
Cg Mg Cg
Mg


 ���� �
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��

                        (8) 

Cg represents the current population iteration number, 
and Mg represents the maximum number of iterations of 
the algorithm. 

Unreasonable values will be generated during the 
running of the algorithm. Therefore, it is necessary to 
rationalize the unreasonable value. In this paper, (9) is 
used to rationalize the unreasonable value generated by the 
calculation. 
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mod -1 1i iV V M� � � �� �                    (9) 
After the intermediate population generated by the 

mutation operation, the disadvantage of slow convergence 
rate of the differential evolution algorithm is carried out 
according to Section 3.6 to increase the number of 
excellent individuals in the population. According to the 
fitness value, the middle population is selected from the 
vaccinated individuals and the mutated individuals, and the 
next generation population is selected according to the 
selection strategy. 

F. Introducing Immune Operators 
Immune algorithm is an algorithm that simulates 

human immunity and evolution mechanism. The 
vaccination mechanism of immune algorithm can 
effectively improve the convergence speed of the 
algorithm without affecting the convergence of the 
algorithm [14]. Therefore, reasonable addition of immune 
algorithm for vaccination can optimize the convergence 
speed of the original algorithm. Aiming at the 
disadvantage of the slow convergence rate of differential 
evolution algorithm, the immunization algorithm is 
introduced into the vaccination process to improve the 
convergence speed of the task scheduling algorithm in this 
paper. The extraction of superior individuals is performed 
at the initial population to generate vaccine pool sets. 

1) Extracting Vaccine 
The vaccine pool is a collection of pairs of cloud tasks 

and computing resources. The number of pairs is 
determined in advance by the characteristics of cloud tasks 
and computing resources. A reasonable threshold is set in 
advance, and the cloud task-calculation resource pair 
whose task completion time is less than the set threshold is 
extracted and added to the vaccine library. For a better 
understanding of the following give a simple example. 
When considering the completion time of the cloud task, 
the time consumption matrix for the scheduling of the five 
tasks onto the three computing resources may be as shown 
in FIG. 2. The rows of the matrix represent the cloud tasks 
and the columns represent the computing resources. 

12 3 2
1 6 3
5 8 11

13 2 4
6 4 11

� �
� �
� �
� �
� �
� �
� �� 	

Fig 2 Time Consumption Matrix 
According to the time cost matrix, the preset vaccine 

pool can be {(2,1), (4,2), (1,3)}.Then X=[3,1,2,2,2] can be 
updated for an individual in the population after 
X=[1,3,2,1,2] vaccination. Similarly, according to the cost 
consumption matrix, the corresponding number of cloud 
task-computing resources pairs can be extracted as a 
vaccine library, and this will not be enumerated 
again.Positioning Figures and Tables: Place figures and 
tables at the top and bottom of columns. Avoid placing 
them in the middle of columns. Large figures and tables 
may span across both columns. Figure captions should be 
below the figures; table heads should appear above the 
tables. Insert figures and tables after they are cited in the 
text. Use the abbreviation “Fig. 1”, even at the beginning 
of a sentence. 

2) Vaccination 

Although the introduction of the vaccination 
mechanism in the differential evolution algorithm can 
improve the convergence rate of the algorithm to a certain 
extent, if the vaccination is improper, the algorithm will 
lead to a local optimum when it is over-exploited. 
Therefore, in order to introduce the immune operator 
reasonably, it is necessary to define the inoculation 
probability formula, as shown in (10). 

- [0, ]CgP e Cg Mg� �                     (10) 
The probability of inoculation was calculated from the 

number of iterations of the algorithm, and the population 
was vaccinated with probability. Since the extracted 
vaccine is a simple pair, it does not change the diversity of 
the population on a large scale. Reasonable use of vaccine 
can effectively improve the convergence speed of the 
algorithm, and effectively improve the algorithm's 
balanced mining and search capabilities. At the end of the 
iteration, the individual's fitness value is examined. When 
the number of iterations increases to a certain value, the 
probability of vaccination is very small. When the 
population is detected after the population iteration is small, 
the vaccination can be selected. 

G. Selecting a Strategy 
Most of the traditional differential evolution algorithm 

selection strategy is to choose greedy selection strategy, 
that is, individuals with better fitness values are selected in 
the middle population and the original population after the 
mutation crossover, and the good individuals are retained 
to form a new parent to enter the next iteration. Thus 
reciprocating the population continuously evolves towards 
a better target fitness value. 

However, there are two shortcomings in the above 
selection strategy. First, the survival of the fittest during 
the iterative process is to select the best iteration to enter 
the new one at a time, which results in a poor global search 
capability leading to a local optimum. Second, good 
individuals generated after mutation operations may be 
destroyed by crossover operations and become individuals 
with poor fitness, which increases the number of iterations. 
In view of the above two insufficiency, in order to improve 
the search capability, we choose to use roulette to select 
and enter the next generation, which can appropriately 
improve the overall search scope and increase the diversity 
of the population. While improving the selection strategy, 
a judgment mechanism is added after the vaccination 
operation. That is, after the vaccination operation, it is 
judged whether the new individual's fitness value is better 
than the original individual. If the evolution of the 
population directly into the next generation is better than 
that of the original individual, and the fitness value of the 
original individual is not good, then the original algorithm 
is used for cross-operation and then the roulette strategy is 
used to select the next generation population. 

H. The overall process of the algorithm 
The flow of the improved differential evolution task 

scheduling algorithm that introduces immune operators is: 
Step 1: According to the cloud computing problem 

model, initialize the parameters, make the current iteration 
number 0, set the maximum number of iterations and other 
variables. 
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Step 2: Randomly generate populations based on the 
set number of cloud tasks and resources. 

Step 3: Calculate the fitness value of the initial 
population based on the dual-target demand set by the 
problem and extract the vaccine pool. 

Step 4: Determine if the result meets the set 
termination condition or the maximum number of 
iterations. If yes, the algorithm is terminated, and 
conversely, execution continues. 

Step 5: Randomly select individuals in the population 
to perform mutation operations to generate the mutated 
individual Vi, vaccinate Vi and select excellent individuals 
as intermediate populations. Determine whether the middle 
population is better than the current parent population. If 
yes, skip step 6; otherwise, perform the sequence. 

Step 6: Crossing the current parent population and the 
intermediate population according to the crossover 
probability generates a new population. 

Step 7: Select the next generation population according 
to the corresponding selection strategy. 

Step 8: Add one iteration, skip to step 4. 
The specific flow chart is shown in Figure 3. 

Star

Randomly generate
populations

Calculate the fitness value of
the initial population

Extract the vaccine pool

Satisfy termination 
conditions?

Crossing generates new
population

Mutation operations

Output optimal solution

Yes

End

Satisfy the crossIng 
condition?

Selection strategy

Yes

No

vaccinate

Select the next generation
population

Add one iteration

No

Fig 3 Algorithm Flowchart 

IV. EXPERIMENTS AND RESULTS

In order to better evaluate and analyze the IDE 
proposed in this paper, cloud simulation platform 
CloudSim was used for simulation. CloudSim is the cloud 
computing simulation software announced by the Grid Lab 
and Gridbus project at the University of Melbourne, 
Australia. CloudSim can provide virtualization engines to 
establish and manage the virtualization services required 
by cloud computing. CloudSim's component tools are easy 
to use for open source architectures and meet cloud 
computing task scheduling requirements. 

In practical problems, the tasks of cloud computing are 
often massive. When the number of processing tasks 
increases, the performance of the algorithm will be 
affected. According to the actual characteristics of cloud 
computing’s computing resources, it is necessary to 
consider both time and cost. Therefore, this paper designs 
two sets of experiments. The first set of experiments keeps 
the number of computing resources constant and selects 
multiple sets of cloud tasks. When evaluating the number 

of computing resources is constant, as the cloud task grows, 
the performance of the differential evolution algorithm and 
other algorithms is improved. The experimental 
comparison algorithm used traditional differential 
evolution algorithm (DE), genetic algorithm (GA) [15] and 
Min-Min [16] algorithm. The second set of experiments 
keeps the number of cloud tasks and computing resources 
unchanged, and sets multiple sets of different a and b 
parameters. Evaluate the effectiveness of the differential 
evolution algorithm when the time and cost are taken into 
account while the cloud tasks and computing resources are 
unchanged. The experimental comparison uses parameter 
settings that only consider the time and only consider the 
cost. 

Initial conditions of experiment 1 algorithm: Randomly 
generate six groups of cloud tasks with different numbers 
100, 200, 400, 600, 800, and 1000. Since the computing 
resources have different processing time for different tasks, 
the latter task needs to include the previous tasks. The 
calculation resource M is set to 10, and when comparing 
the algorithms, the task completion time and the task total 
cost are respectively considered. 

Fig 4 Comparison of task completion time 

Fig 5 Comparison of task completion cost 
Analysis of experimental results: It can be seen from 

Figure 4 and Figure 5. When the number of tasks is small, 
the performance of the algorithm is not much different. 
However, it can be seen that when the number of tasks is 
large, the IDE algorithm is significantly shorter than other 
algorithms and the cost is low. It shows that the IDE 
algorithm proposed in this paper has good performance in 
handling massive cloud tasks. 

Initial conditions of experiment 2 algorithm: Randomly 
generate 100 tasks, computing resource M is set to 10, and 
the maximum number of iterations is set to 100. Set (a = 1, 

g
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b = 0); (a = 0, b = 1); (a = 0.5, b = 0.5) three different pairs 
a, b values. 

Fig 6 Task Completion Time 

Fig 7 Total Task Costs 
Analysis of experimental results: It can be seen from 

Fig. 6 and Fig. 7 that the performance of the algorithm is 
conflicting when considering only time and only cost. The 
IDE algorithm proposed in this paper, which considers 
both time and cost, is suitable for a wide range of users 
who balance time and cost. When dealing with practical 
problems, the IDE algorithm can adjust the values of 
parameters a, b to meet the needs of different users. 

V. CONCLUSION

According to the characteristics of cloud computing 
task scheduling problem, taking into account the dual goals 
of time and cost, a dual-objective improved differential 
evolution algorithm is proposed.A simple coding method 
is used to model the cloud computing task scheduling, and 
a judgment mechanism is introduced before the crossover 
operation. At the same time, the immune operator is added 
after the mutation crossover, which accelerates the 
convergence speed of the algorithm better and adopts an 
adaptive scaling factor F. Increased population diversity 
prevents the algorithm from falling into a local optimal 
solution. Through simulation experiments, the proposed 
algorithm is compared with the traditional cloud 
computing task scheduling algorithm. The algorithm 
proposed in this paper has a faster convergence speed and 
lower cost. However, there are still some shortcomings in 
the research of this algorithm for cloud computing task 
scheduling. The next step will be to consider that during 
the operation of the algorithm, network delays and 
interruptions need to be added to the task memory function 
in order to better meet the cloud computing task 
scheduling requirements.  
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