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Abstract—In this work, we consider the Schrödinger-
Poisson equations with the fractional Laplacian of order α
in RN . Under some suitable assumptions on potential V (x)
and the nonlinear term f(x, u), the existence of multiple
solutions is proved by using the Mountain Pass Theorem and
the Ekelands variational principle in critical point theory. As
a special case, we prove the existence of two nontrivial radial
solutions when V (x) ≡ 1, f(x, u) = |u|p−2u .

Keywords-Nonhomogeneous; Schrödinger-Poisson equa-
tions; Mountain Pass Theorem; Variational methods

I. INTRODUCTION

In this paper, we are concerned with the following
fractional Schrödinger-Poissson equation{

(−∆)αu+ V (x)u+ φu = f(x, u) + h(x), x ∈ RN ,
(−∆)αφ = Kαu

2, x ∈ RN ,
(1.1)

where α ∈ (0, 1), Kα = π−αΓ(α)
π−(3−2α)/2Γ((3−2α)/2)

, (−∆)α

stands for the fractional Laplacian, u, φ : RN → R,f :
RN × R→ R.

F((−∆)αω)(ξ) = |ξ|2αF(ω)(ξ), ∀ α ∈ (0, 1),

where F is the Fourier transform, i.e.,

F(ω)(ξ) =
1

(2π)
N
2

∫
RN

exp{−2πiξ · x}dx.

If ω is smooth enough, (−∆)α can be computed by

(−∆)αω(x) = cN,αP.V.

∫
RN

w(x)− w(y)

|x− y|2α+N
dy,

where P.V. is the principal value and cN,α is a normaliza-
tion constant which depends on N and α, precisely given
by cN,α =

( ∫
RN

1−cosξ1
|ξ|N+2α dξ

)−1
.

A basic motivation of the study of system (1.1)
comes from standing wave solutions with the type of
ψ(x, t) = exp(−ict)u(x) for the time-dependent frac-
tional Schröodinger equation

i
∂ψ

∂t
+(−4)αψ+(V (x)−c)ψ = f(x, ψ)+h(x), in RN ,

where i is the imaginary unit.
When α = 1, (1.1) becomes the classical Schrödinger-

Poisson equation{
−∆u+ V (x)u+ φu = f(x, u), x ∈ RN ,
−∆φ = u2, x ∈ RN . (1.2)

In the past decade, the existence and multiplicity of
standing wave solutions of (1.2) have been widely inves-
tigated, we refer the readers to [1], [2], [3], [11] and the
references therein. For fractional Schrödinger equations

(−∆)αu+ V (x)u = f(x, u), x ∈ Ω, (1.3)

where α ∈ (0, 1) and Ω is a domain of RN . When Ω
is a bounded domain, Nyamoradi [15] studied a class of
Kirchhoff nonlocal fractional equation and obtained three
solutions by using three critical point theorem. [12] studied
a class of nonlocal fractional Laplacian equations depend-
ing on two real parameters and obtained the existence of
three weak solutions. For more related results, we refer
the readers to [13], [14] and the references therein.

When V (x) = 1, Dipierro et al. [4] proved the existence
and symmetry of the solutions with f(x, u) = |u|p−2u,
and in [10], Felmer et al. obtained the existence, regularity
and qualitative properties of ground states of problem
(1.3), and the result has been extended in any dimension
when α is sufficiently close to 1 by Fall et al. [5].

In particular, let V (x) ≡ 1 and f(x, u) = |u|p−2u, the
problem (1.1) will be reduced to{

(−∆)αu+ u+ φu = |u|p−2u+ h(x), x ∈ RN ,
(−∆)αφ = Kαu

2, x ∈ RN .
(1.4)

In this paper, we mainly consider the problem (1.1) in RN .
By combining the Mountain Pass theorem and the Ekeland
variational principle, we obtain the existence of the two
nontrivial solutions for problem (1.1). As a special case,
we prove the existence of two nontrivial radial solutions
for the problem (1.4).

II. PRELIMINARIES

In order to obtain multiple solutions for problem (1.1),
we assume that V (x) and f(x, u) satisfy the following
hypotheses

(v1) V ∈ C(RN ,R) satisfies inf
x∈RN

V (x) ≥ a1 > 0,

where a1 > 0 is a constant. Moreover, for any M > 0,
meas{x ∈ RN : V (x) ≤ M} < ∞, where meas denotes
the Lebesgue measure in RN .

(f1) f ∈ C(RN ×R,R), and there exist 2 < p < 2∗α =
2N

N−2α and constant c1 > 0 such that

|f(x, u)| ≤ c1(1 + |u|p−1), ∀ x ∈ RN , u ∈ R.
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(f2) f(x,u)
u → 0, as u→ 0 uniformly for x ∈ RN .

(f3) There exist µ > 4 such that µF (x, u) ≤ uf(x, u),
where F (x, u) =

∫ u
0
f(x, s)ds.

(f4) inf
x∈RN ,||u||=1

F (x, u) > 0.

In view of the potential V (x), we consider the space

E =

{
u ∈ Hα(RN )

∣∣ ∫
RN
|(−∆)

α
2 u|2+V (x)u2dx <∞

}
.

E is a Hilbert space with the inner product

(u, v)E =

∫
RN

(
|ξ|2αû(ξ)v̂(ξ) + û(ξ)v̂(ξ)

)
dξ

+

∫
RN

V (x)u(x)v(x)dx, ∀u, v ∈ E.

and the norm

||u||E =

(∫
RN

(
|ξ|2αû2 + û2

)
dξ +

∫
RN

V (x)u2dx

) 1
2

.

is equivalent to the following norm

||u|| =
(∫

RN

(
|(−∆)

α
2 u|2 +

∫
RN

V (x)u2
)
dx

) 1
2

.

The corresponding norm is

(u, v) =

∫
RN

(
(−∆)

α
2 u(−∆)

α
2 v+V (x)uvdx

)
, ∀u, v ∈ E.

In this paper, we will use the norm || · || in E.
Lemma 2.1 ([7]) For 1 < p < ∞ and 0 < α < N

p , we
have

‖u‖ pN
N−pα

≤ B||(−∆)
α
2 u||p (2.1)

with best constant B = 2−απ
−α
2

Γ(N−α
2 )

Γ(N+α
2 )

(
Γ(N)

Γ(N2 )

) α
N

.

Lemma 2.2. For every u ∈ Hα(RN ) there exists a unique
φ = φu ∈ Dα(RN ) which solves the equation (−∆)αφ =
Kαu

2, x ∈ RN . Furthermore, φu is given by

φu =

∫
RN
|x− y|2α−3u2(y)dy. (2.2)

The mapping Φ : u ∈ Hα(RN ) 7→ φu ∈ Dα and

[φu]′(v) = 2

∫
RN
|x−y|2α−3u(y)v(y)dy, ∀ u, v ∈ Hα(RN ).

(2.3)
Lemma 2.3. Assume that a sequence {un} ⊂ E, un ⇀
u, in E, as n → ∞ and {un} be a bounded sequence.
Then∣∣∣∣ ∫

RN

(
φunun − φuu

)
(un − u)dx

∣∣∣∣→ 0, as n→∞.
(2.4)

Throughout the paper, Lr(RN ) = {u : RN → R :
u is measurable and

∫
RN |u|

r dx < ∞} with the norm

‖u‖r =
( ∫

RN |u|
r dx

) 1
r and C is various positive generic

constants, which may vary from line to line. Also if we
take a subsequence of a sequence {un} we shall denote
it as {un} again.

III. CONCLUSION

System (1.1) is the Euler-Lagrange equations corre-
sponding to the functional J : Hα(RN )×Dα(RN )→ R
J(u, φ)

=
1

2

∫
RN

(
|(−∆)

α
2 u|2 +

∫
RN

V (x)u2 − 1

2
|(−∆)

α
2 φ|2

+Kαφu
2

)
dx−

∫
RN

F (x, u)dx−
∫
RN

h(x)udx. (3.1)

By Lemma 1 in [8] and (2.2), the function J belongs to
C1(Hα(RN )×Dα(RN ),R) and the partial derivatives in
(u, φ) are given, for ξ ∈ Hα(RN ) and η ∈ Dα(RN ), we
have〈

∂J

∂u
(u, φ), ξ

〉
=

∫
RN

(
(−∆)

α
2 u(−∆)

α
2 ξ + V (x)uξ

+Kαφuξ
)
dx−

∫
RN

f(x, u)ξdx−
∫
RN

h(x)ξdx,〈
∂J

∂φ
(u, φ), η

〉
=

1

2

∫
RN

(
−(−∆)

α
2 φ(−∆)

α
2 η+Kαu

2η
)
dx.

Thus, we have the following result:
Proposition 3.1. The pair (u, φ) is a weak solution of
system (1.1) if and only if it is a critical point of J in
Hα(RN )×Dα(RN ).

We can consider the functional J : Hα(RN ) → R
defined by J(u) = J(u, φu). After multiplying equation
(−∆)αφu = Kαu

2 by φu and integration by parts over
RN , we have∫

RN
|(−∆)

α
2 φu|2dx = Kα

∫
RN

φuu
2dx. (3.2)

By (3.2), the reduced functional takes the form

J(u) =
1

2

∫
RN

(
|(−∆)

α
2 u|2 +

∫
RN

V (x)u2
)
dx

+
1

4
Kα

∫
RN

φuu
2dx−

∫
RN

F (x, u)dx−
∫
RN

h(x)udx.

(3.3)
Evidently, J is well defined and belongs to C1(E,R) with
the derivative given by〈
J ′(u), v

〉
=

∫
RN

(−∆)
α
2 u(−∆)

α
2 vdx+

∫
RN

V (x)uvdx

+Kα

∫
RN

φuuvdx−
∫
RN

f(x, u)vdx−
∫
RN

h(x)vdx.

(3.4)
It can be proved that (u, φ) ∈ E×Dα(RN ) is a solution

of system (1.1) if and only if u ∈ E is a critical point of
the functional J and φ = φu.

We consider a minimization of J constrained in a
neighborhood of zero by using the Ekeland’s variational
principle, a critical point of J which achieves the local
minimum of J can be found and the level of this local
minimum is negative. Around the “zero” point, due to the
Mountain Pass Theorem, we can also obtain a critical point
of J and its level is positive. Therefore, the two critical
points must be distinct, since they are in different levels.
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Lemma 3.1. Suppose that (V1), (f1) and (f2) hold,
let h ∈ L2(RN ) hold. Then there exist some constants
ρ, η, m0 > 0 such that inf{J(u) : u ∈ E with
||u|| = ρ} ≥ η for all ||h||2 < m0.
Lemma 3.2. Suppose that (V1), (f3) and (f4) hold, then
there exists a function v ∈ E with ||v|| > ρ such that
J(v) < 0, where ρ is given in Lemma 3.1.
Lemma 3.3. Assume that (V1), (f1), (f2) hold and
{un} ⊂ E is a bounded Palais-Smale sequence of J , then
{un} has a strongly convergent subsequence in E.

In view of the above discussions, we show the existence
of at least two different solutions of the system (1.1).
Theorem 1. Suppose that h ∈ L2(RN ) and h 6≡ 0. Let
(v1) and (f1) − (f4) hold, then there exists a constant
m0 > 0 such that the system (1.1) possesses at least two
different solutions when ‖h‖2 < m0.
Proof. The proof of this theorem is divided into two steps.

Step 1. There exists a function u1 ∈ E such that
J ′(u1) = 0 and J(u1) < 0.

For any (x, u) ∈ RN × R, set h(t) = F (x, t−1u)tµ,
∀ t ∈ [1,+∞). By (f3), we have

h′(t) = f(x, t−1u)(− u
t2

)tµ + F (x, t−1u)µtµ−1

= tµ−1
[
µF (x, t−1u)− t−1uf(x, t−1u)

]
≤ 0

(3.5)
which implies that h(t) is nonincreasing. Therefore, for
any |u| ≥ 1, we have h(1) ≥ h(|u|), that is,

F (x, u) ≥ F (x, |u|−1u)|u|µ ≥ c2|u|µ, (3.6)

where c2 = inf
x∈RN ,||u||=1

F (x, u) > 0 by (f4). It follows

from (f2) that there exists α > 0 such that∣∣f(x, u)u

u2

∣∣ =
∣∣f(x, u)

u

∣∣ ≤ 1, (3.7)

for all x ∈ RN and 0 < |u| ≤ α. By (f1), for a.e. x ∈ RN
and α ≤ |u| ≤ 1, there exists M1 > 0 satisfying∣∣f(x, u)u

u2

∣∣ ≤ c1(|u|+ |u|p−1|u|)
u2

≤M1. (3.8)

Now, from (3.7), (3.8) we have that, for all for a.e. x ∈
RN and 0 ≤ |u| ≤ 1

f(x, u)u ≥ −(M1 + 1)|u|2.

Using the inequality F (x, u) =
∫ u

0
f(x, s)ds, we have

F (x, u) ≥ −1

2
(M1 + 1)|u|2, (3.9)

for a.e. x ∈ RN and 0 ≤ |u| ≤ 1. Taking c3 = 1
2 (M1 +

1) + c2, then it follows from (3.6) and (3.9) that

F (x, u) ≥ c2|u|µ − c3|u|2, (3.10)

for a.e. x ∈ RN and u ∈ R. Since h ∈ L2(RN ) and h 6≡ 0,
we can choose a function ψ ∈ E such that

∫
RN h(x)ψ > 0.

Therefore, we obtain that

J(tψ) =
t2

2

∫
RN

(
|(−∆)

α
2 ψ|2 +

∫
RN

V (x)ψ2
)

+
t4

4
Kα

∫
RN

φψψ
2dx−

∫
RN

F (x, tψ)dx−t
∫
RN

h(x)ψdx

≤ 1

2
t2||ψ||2 + Ct4||ψ||4 − c2tµ||ψ||µµ + c3t

2||ψ||22

− t
∫
RN

h(x)ψdx < 0,

for t > 0 small enough. Hence, we have

c1 = inf{J(u) : u ∈ B̄ρ} < 0,

where ρ > 0 is given by Lemma 3.1. Ekeland’s variational
principle, there exists a sequence {un} ⊂ B̄ρ such that
c1 ≤ J(un) < c1 + 1

n , and J(w) ≥ J(un)− 1
n ||w − un||

for all w ∈ B̄ρ . Applying a standard procedure, we can
show that {un} is a bounded (PS)c sequence of J . Hence,
there exists a function u1 ∈ E such that J ′(u1) = 0 and
J(u1) < 0.

Step 2. There exists a function ũ1 ∈ E such that
J ′(ũ1) = 0 and J(ũ1) > 0. By Lemma 3.1, 3.2 and Moun-
tain Pass Theorem, there exists a sequence {un} ⊂ E
such that J(un)→ c̃1 > 0, andJ ′(un)→ 0, as n→∞.
It follows from (f3) that
c2 + 1 + ||un|| = J(un)− 1

µ 〈J
′(un), un〉

= (
1

2
− 1

µ
)||un||2+(

1

4
− 1

µ
)Kα

∫
RN

φunu
2
ndx

+

∫
RN

(
1

µ
f(x, un)un−F (x, un))dx+(

1

µ
−1)

∫
RN

h(x)undx

≥ (
1

2
− 1

µ
)||un||2 +

∫
RN

(
1

µ
f(x, un)un − F (x, un))dx

+(
1

µ
−1)

∫
RN

h(x)undx,

for n large enough. Therefore, {un} is bounded in E,
since µ > 4 and ||h||2 < m0. �

Obviously, the system (1.4) has a variational structure.
Indeed we consider the functional I : Hα(RN ) → R
defined by

I(u) =
1

2

∫
RN

(
|(−∆)

α
2 u|2 + u2

)
dx+

1

4
Kα

∫
RN

φuu
2dx

− 1

p

∫
RN
|u|pdx−

∫
RN

h(x)udx.

(3.11)
Evidently, I is well defined and belongs to
C1(Hα(RN ),R) with the derivative given by〈
I ′(u), v

〉
=

∫
RN

(−∆)
α
2 u(−∆)

α
2 vdx+

∫
RN

uvdx

+Kα

∫
RN

φuuvdx−
∫
RN
|u|p−2uvdx−

∫
RN

h(x)vdx.

(3.12)
Since system (1.4) is set on RN , it is well known that
the Sobolev embedding Hα(RN ) ↪→ Lr(RN ) is not
compact for 2 ≤ r < 2∗α, then it is not easy to prove
a minimizing sequence or a Palais-Smale sequence is
strongly convergent if we look for solutions of system
(1.4) via variational methods. In order to overcome the
difficulty, we restrict problem (1.4) in the radial function
space, where functions u = u(r), r = |x|. More precisely
we shall consider I on the space of radial functions

Hα
r (RN ) := {u ∈ Hα(RN ) : u = u(r), r = |x|}.
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Hα
r (RN ) is a natural constraint for I , that is, any critical

points u ∈ Hα
r (RN ) of I

∣∣
Hαr (RN )

is also a critical point
of I . Therefore, It’s reduced to seek critical points of
I
∣∣
Hαr (RN )

.
Lemma 3.4. Assume that h ∈ C1(RN ) ∩ L2(RN )
is a radial function. Then there exist some constants
ρ1, η1, m1 > 0 such that inf{I(u) : u ∈ Hα(RN )
with ||u||Hα = ρ1} ≥ η1 for all ||h||2 < m1.
Lemma 3.5. There exists a function v1 ∈ Hα

r (RN ) with
||v1||Hα > ρ1 such that I(v1) < 0, where ρ1 is given in
Lemma 3.4.
Lemma 3.6. Assume that {un} ⊂ Hα

r (RN ) is a bounded
Palais-Smale sequence of I , then {un} has a strongly
convergent subsequence in Hα

r (RN ).
Theorem 2. Suppose that h ∈ C1(RN ) ∩ L2(RN ) is a
radial function and h 6≡ 0. Let 4 < p < 2∗α, then there
exists a constant m1 > 0 such that problem (1.4) possesses
at least two different solutions when ||h||2 < m1.
Proof. Step 1, we try to seek a function u2 ∈ Hα

r (RN )
such that I ′(u2) = 0 and I(u2) < 0.

Since h ∈ C1(RN ) ∩ L2(RN ) is a radial function and
h 6≡ 0, we can choose a function ψ1 ∈ Hα

r (RN ) such that∫
RN

h(x)ψ1 > 0.

Therefore, we obtain that

I(tψ1) =
t2

2

∫
RN

(|(−∆)
α
2 ψ1|2 +

∫
RN

ψ2
1)dx

+
t4

4
Kα

∫
RN

φψ1ψ
2
1dx−

tp

p

∫
RN
|ψ1|pdx−t

∫
RN

h(x)ψ1dx

≤ t2

2
||ψ1||2+Ct4||ψ1||4−

tp

p
||ψ1||pp−t

∫
RN

h(x)ψ1dx < 0,

for t > 0 small enough. Hence, we have c2 = inf{I(u) :
u ∈ B̄ρ1} < 0, where ρ1 > 0 is given by Lemma 3.4.
Then by Ekeland’s variational principle, there exists a
sequence {un} ⊂ B̄ρ1 such that

c2 ≤ I(un) < c2 +
1

n

and
I(w) ≥ I(un)− 1

n
||w − un||Hα

for all w ∈ B̄ρ1 . It follows from Lemma 3.6 that there
exists a function u2 ∈ Hα

r (RN ) such that I ′(u2) = 0 and
I(u2) < 0.

Step 2. There exists a function ũ2 ∈ Hα
r (RN ) such

that I ′(ũ2) = 0 and I(ũ2) > 0. By Lemma 3.4, 3.5 and
Mountain Pass Theorem, there exists a sequence {un} ⊂
Hα
r (RN ) such that I(un)→ c̃2 > 0, I ′(un)→ 0, as n→
∞. From Lemma 3.6, we only need to check that {un}
is bounded in Hα

r (RN ). By (3.12), 4 < p < 2∗α, we have

pc̃2 + ||un||Hα = pI(un)− 〈I ′(un), un〉

= (
p

2
− 1)||un||2Hα +

(p− 4)Kα

4

∫
RN

φunu
2
ndx

−(p− 1)

∫
RN

h(x)undx

≥ (
p

2
− 1)||un||2Hα − (p− 1)||h||2||un||Hα ,

for n large enough. Therefore, {un} is bounded in
Hα
r (RN ) . �
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