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Abstract—Optical flow estimation is a basic problem in
computer vision. FlowNet is the first convolutional neural
network based optical algorithm that estimates optical flow
by learning the relationship between image pair and the cor-
responding optical flow. In this paper, MaxFlow is proposed
to improve the accuracy of FlowNet. The architecture of
MaxFlow is similar to that of FlowNetSimple. MaxFlow uses
two kinds of new layers, which are designed specially for
estimating large displacements of small scale objects. The
new down sampling layer makes the network to predict
the maximum displacement in a region. Thus the large
movements will not be missed. The new up sampling layer up
samples the estimated optical flow fields without using any
parameter. It simplifies the network without decreasing the
accuracy of the network. Experiments on synthetic datasets
and real datasets illustrate that the two new layers are
effective and the accuracy of MaxFlow is higher than that
of FlowNet.
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I. INTRODUCTION

Convolutional neural networks (CNN) have been suc-

cessfully applied in many computer vision tasks. However,

there are relatively few CNN-based optical flow algorithm-

s. FlowNet [1] is the first algorithm that trains a CNN to

estimate optical flow in an end-to-end manner. FlowNet

2.0 [2] improves FlowNet by adopting a more complex

learning schedule and integrating multiple networks. In

this paper, we improve FlowNet by giving it different

supervision.

Estimating large displacements and small displacements

can be thought as two different subproblems [3], and large

displacement estimation has long be thought as the hard

one [4], especially the large displacements of small scale

structures [5]. This paper puts focus on estimating the

large displacements of small scale structure.

FlowNet contains a contracting part that aggregates

motion information and an expanding part that refines

the coarse optical flow prediction. Neurons in FlowNet

estimate optical flow by matching features. If the distance

between two features is larger than the size of the receptive

field of a neuron, the neuron cannot match them because

it only sees features located in its receptive field. As

a result, large displacements can only be outputted by

neurons in the upper layers that have larger receptive

fields. However, in FlowNet, the prediction target of each

neuron in the upper layers is the weighted average of

ground truth optical flow values in a large region. Thus,

the fast motion of small scale structures will be lost if its

scale is much smaller than the region. In lower layers, the

region used for computing the prediction target of each

neuron is smaller, but the receptive field is also smaller.

FlowNet concatenates the coarse feature maps with the

fine feature maps to enlarge the receptive fields of neurons

in lower layers. These coarse feature maps can provide

information for estimating large displacements, but it is

hard for upper layers to learn features for predicting

optical flow average and large displacements of small scale

structures at the same time. In this paper, we simplify the

task of upper layers and only require them to predict large

displacements.

This paper proposes MaxFlow, a optical flow estima-

tion CNN whose network structure is similar to that

of FlowNet. In MaxFlow, the prediction target of each

neuron in upper layers is the maximal displacement of the

pixels in a region, not the average displacement. When

the region reduces to one pixel, the network outputs the

estimated optical flow field. MaxFlow can predict large

displacements of small scale objects, and the optical flow

field estimated by MaxFlow has more clear edge than that

of FlowNet.

In the remainder of this paper, Section II introduces

the related work. Section III introduces the new layers

in MaxFlow. Section IV reports the experimental analysis

and last, Section V gives the conclusion.

II. RELATED WORK

Optical flow algorithms estimate the displacement of

each pixel in two consecutive video frames. Since Horn

and Schunck published their seminal paper in 1981 [6],

variational methods have become the dominating methods

for optical flow estimation. These methods are effective

at estimating small displacements. Using coarse-to-fine

warping schemes, algorithms can estimate large displace-

ments of large scale structures by computing optical flow

at coarser resolution levels [4], but they may fail to

estimate the large displacements of small scale struc-

tures. Brox and Malik introduced descriptor matching to

variational methods to resolve the difficulties in large

displacement estimation [5]. The sparse matches computed
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by descriptor matching provide the information of large

displacements for variational methods.

EpicFlow [7] makes a further step to utilize the infor-

mation provided by descriptor matching. On the sparse

matches computed by DeepMatching [8], EpicFlow per-

forms edge-preserving interpolation to get a dense flow

field, which is a good initialization for the optimization

of variational models. In this way, the large displacement

information provided by sparse matching and the sub-pixel

accuracy provided by variational methods are combined

effectively. After the publication of EpicFlow, matching,

interpolation and variational refinement become three stan-

dard steps in a modern optical flow algorithm [9]. Many

algorithms put the focus on inventing effective descriptor

matching techniques suited for optical flow estimation

[10]–[13]. Some algorithms use CNNs to generate image

patch descriptors for matching [3], [11], [12], [14]–[16].

Besides sparse matching techniques, discrete optimiza-

tion can also be used to estimate large displacements.

DiscreteFlow [17] and FullFlow [18] perform discrete

inference to estimate large-displacement integral optical

flow. The obtained integral displacements are also refined

by EpicFlow.

However, even for the state-of-the-art optical flow al-

gorithms that use descriptor matching to estimate large

displacements, there is still much space to improve the ac-

curacy for large displacement estimation. Yang and Soatto

design a method [19] that runs Flow Fields algorithm [10]

multiple iterations. At each iteration, only the estimations

with high confidence are determined. They find that large

displacements of small scale structures are determined

lasted.

FlowNet [1] is the first algorithm that uses CNN to

estimate dense optical flow directly. It adopts a fully

convolutional structure [20], so the input images could

be of any size. The contracting part of FlowNet uses

convolutional layers to extract features, and the expanding

part uses upconvolutional layers to upsample the coarse

feature maps and coarse optical flow estimations. The

upsampled feature maps and estimations are concatenated

with fine feature maps to estimate fine optical flow fields.

The network training loss is the weighted sum of the

endpoint errors (EPE) of all optical flow estimations.

Compared with EpicFlow, FlowNet preserves more fast

motion details, but it makes some errors in small back-

ground movements. Variational methods can be used to

improve the estimations of FlowNet further. FlowNet 2.0

[2] approximates the variational refinement by stacking

multiple FlowNets, and uses a small network specially

trained for small optical flow to improve the estimation

accuracy. We find that though FlowNet preserves more

motion details, some large displacements of small scale

structures are missing in the optical flow fields. We try to

solve this problem by requiring the network to estimate

the maximum displacement of pixels in each region.

III. THE NETWORK

The architecture of MaxFlow is similar to that of

FlowNetSimple [1]. The contracting part of MaxFlow

contains ten convolutional layers, each followed by a

ReLU nonlinearity layer. The expanding part of MaxFlow

contains six groups of layers for optical flow refinement.

In each refinement step, the up sampled coarse flow

estimation, the up sampled coarse feature maps, and the

corresponding fine features are concatenated. Then the fine

flow estimation is estimated by performing convolution on

this concatenation. The expanding part predicts seven op-

tical flow fields with different resolutions. Each prediction

is compared with a down sampled ground truth to get a

loss.

The main differences of FlowNet and MaxFlow lie in

the expanding part. In MaxFlow, the down sampling layers

used to down sample the optical flow ground truths and

the up sampling layers used to up sample the optical flow

predictions are different from those in FlowNet. These two

kinds of new layers put emphasis on large displacement

discovery.

A. The Down Sampling Layer

As FlowNet, MaxFlow computes optical flow estima-

tions of different resolutions. Each estimation is inputted

into a loss layer to compare with the ground truth.

The resolutions of these estimations are smaller than the

ground truth. FlowNet down samples the ground truth

by computing the weighted sum of the flow vectors in a

region. For each estimation, the size of the region equals

(2n+1)×(2n+1) if the resolution of the flow estimation

is n times smaller than that of the ground truth. This down

sampling is reasonable for regions in which the flows are

smooth. However, when there are different movements in

the region, the physical meaning of the weighted sum is

unclear. More seriously, the large displacements of small

or thin objects will be smoothed out.

The down sampling layer in MaxFlow does not compute

the weighted sum of the flow vectors, but chooses the

maximum absolute value for each dimension of the flow

as the ground truth for a region. This ground truth makes

the network to predict the maximum displacement in a

region. Thus, the large displacements will be predicted

even for small scale structures. When the region reduces

to one pixel, the network predicts the optical flow for each

pixel. We adopt n× n as the size of the region for down

sampling, so the region reduces to one pixel when the

resolution of the flow estimation equals that of the ground

truth.

In order to obtain optical flow estimation whose resolu-

tion equals the resolution of the input, MaxFlow performs

two more steps of estimation refinement than FlowNet.

FlowNet does not refine the optical flow estimation to

the input resolution because compared to bilinear up sam-

pling, further refinement does not significantly improve

the results [1]. Thus, the improvements of MaxFlow do

not come from the added layers for refinement.
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Figure 1. The up sampling operation.

B. The Up Sampling Layer

Both FlowNet and MaxFlow refine a coarse flow esti-

mation by performing convolution on the concatenation of

up sampled coarse feature maps, fine features, and the up

sampled coarse flow estimation. FlowNet up samples both

the coarse feature maps and the coarse flow estimation

using an ’upconvolutional’ layer (’Deconvolution’ layer in

Caffe [21]). This layer first enlarges the feature maps by

padding 0, then applies convolution to the enlarged feature

maps.

When convolution is applied to a coarse flow estimation,

the flow estimation is changed. To transfer the information

of large displacements to later layers, we prefer to keep the

coarse flow estimation unchanged. Thus, we realize a new

up sampling layer that just copies the flow vectors from

the coarse estimation to the enlarged feature maps. This up

sampling operation on one feature map is illustrated in Fig.

1. As in the down sampling layer, one pixel in the coarse

estimation corresponds to a region in the fine feature maps.

The size of the region is n × n if the resolution of the

coarse flow estimation is n times smaller than the enlarged

feature maps. For every pixel in a region in the enlarged

feature maps, its flow value equals the flow value of the

pixel in the coarse flow estimation that corresponds to

this region. This new up sampling layer has no parameter,

which reduces the flexibility of the network. However, the

preserved information of large motion is beneficial to the

estimation for large displacements.

IV. EXPERIMENTS

We use the Flying Chairs dataset [1] to train our

MaxFlow network. The experimental analysis is per-

formed on Flying Chairs, KITTI, and Sintel datasets.

We compare the MaxFlow with FlowNet [1]. All of our

experiments are performed on an Intel Xeon E5 at 2.4GHz

with a Nvidia GTX 1080.

A. Training Details

The network is trained by the synthetic Flying Chairs

dataset. This dataset contains 22,872 image pairs, among

which 22,232 image pairs are used to train the network,

and the remain 640 image pairs are used to test the

network.

We use the same training process as that used by

FlowNet [1]. The training loss of the network is the

average endpoint error, which is the average Euclidean

distance between the predicted optical flow vectors and

Table I
THE ACCURACY COMPARISON.

Models Flying Chairs Test Sintel Clean (train) KITTI 2012
FlowNetS 2.71 4.50 8.26
MaxFlow- 2.49 4.50 8.11
MaxFlow 2.51 4.43 8.10

the corresponding ground truths. The Adam optimization

algorithm is used, with a mini-batch size of 8. The learning

rate starts from 0.0001 and is divided by 2 every 100k

iterations after the first 300k. The network is trained

for 600k iterations. On our computer, the whole training

process takes about three days.

B. Accuracy Comparison

The accuracy of the networks are measured by the

average endpoint errors of the predicted flow values.

Table I gives the average endpoint errors of FlowNet

and MaxFlow on three different datasets. The errors of

MaxFlow are lower than that of FlowNetS. Figure 2 shows

the optical flow fields estimated by these two networks

on the Sintel Clean (train) dataset. Figure 3 shows the

estimated optical flow fields on the Flying Chairs dataset.

We can see that compared with FlowNetS, our MaxFlow

preserves more motion details and have more clear edges.

(a) (b) (c)

Figure 2. The accuracy comparison on the Sintel Clean (train) dataset.
(a) The ground truth. (b) The optical flow predicted by FlowNetS. (c)
The optical flow predicted by MaxFlow.

There are two kinds of new layers in MaxFlow. In order

to investigate the effects of the new layers, we also give the

average endpoint errors of MaxFlow-, in which only the

new down sampling is used, in Table I. From the data in

Table I, we can see that the down sampling layers improve

the accuracy of the network, and the up sampling layers

simplify the network without decreasing the accuracy of

the network.

V. CONCLUSION

This paper proposes MaxFlow, a new convolutional

network for optical flow estimation. The key contribution

is the two new layers designed specially for estimating

large displacements of small scale structures. Experiments

illustrate that MaxFlow can preserve more motion details

than FlowNet, and has lower average endpoint error on

multiple datasets.
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(a) (b) (c)

Figure 3. The accuracy comparison on the Flying Chairs dataset. (a)
The ground truth. (b) The optical flow predicted by FlowNetS. (c) The
optical flow predicted by MaxFlow.

ACKNOWLEDGMENT

This work was supported by the National Natural Sci-

ence Foundation of China under grant 51479158.

REFERENCES

[1] A. Dosovitskiy, P. Fischery, E. Ilg, P. Husser, C. Hazirbas,
V. Golkov, P. v. d. Smagt, D. Cremers, and T. Brox,
“Flownet: Learning optical flow with convolutional net-
works,” in 2015 IEEE International Conference on Com-
puter Vision (ICCV), Dec 2015, pp. 2758–2766, .

[2] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy,
and T. Brox, “Flownet 2.0: Evolution of optical flow
estimation with deep networks,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July
2017, pp. 1647–1655, .

[3] T. Schuster, L. Wolf, and D. Gadot, “Optical flow requires
multiple strategies (but only one network),” in The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017, .

[4] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High
accuracy optical flow estimation based on a theory for
warping,” in Computer Vision - ECCV 2004, T. Pajdla
and J. Matas, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 25–36.

[5] T. Brox and J. Malik, “Large displacement optical flow: De-
scriptor matching in variational motion estimation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 33, no. 3, pp. 500–513, March 2011, .

[6] B. K. P. Horn and B. G. Schunck, “Determining
optical flow,” Artif. Intell., vol. 17, no. 1-3, pp. 185–203,
1981, . [Online]. Available: http://dx.doi.org/10.1016/0004-
3702(81)90024-2

[7] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid,
“Epicflow: Edge-preserving interpolation of correspon-
dences for optical flow,” in 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June
2015, pp. 1164–1172, .

[8] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid,
“Deepflow: Large displacement optical flow with deep
matching,” in 2013 IEEE International Conference on
Computer Vision, Dec 2013, pp. 1385–1392, .

[9] S. Zweig and L. Wolf, “Interponet, a brain inspired neural
network for optical flow dense interpolation,” in The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017, , ł.

[10] C. Bailer, B. Taetz, and D. Stricker, “Flow fields: Dense
correspondence fields for highly accurate large displace-
ment optical flow estimation,” in 2015 IEEE International
Conference on Computer Vision (ICCV), Dec 2015, pp.
4015–4023, .

[11] J. Xu, R. Ranftl, and V. Koltun, “Accurate optical flow via
direct cost volume processing,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July
2017, .

[12] C. Bailer, K. Varanasi, and D. Stricker, “Cnn-based patch
matching for optical flow with thresholded hinge embed-
ding loss,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017, .

[13] Y. Hu, R. Song, and Y. Li, “Efficient coarse-to-fine patch-
match for large displacement optical flow,” in The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016, .

[14] F. Gney and A. Geiger, “Deep discrete flow,” in Asian
Conference on Computer Vision (ACCV), 2016, .

[15] J. Thewlis, S. Zheng, P. H. S. Torr, and A. Vedaldi, “Fully-
trainable deep matching,” BMVC, vol. abs/1609.03532,
2016, . [Online]. Available: http://arxiv.org/abs/1609.03532

[16] D. Gadot and L. Wolf, “Patchbatch: A batch augmented loss
for optical flow,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016, pp.
4236–4245, .

[17] M. Menze, C. Heipke, and A. Geiger, “Discrete opti-
mization for optical flow,” in Pattern Recognition, J. Gall,
P. Gehler, and B. Leibe, Eds. Cham: Springer International
Publishing, 2015, pp. 16–28.

[18] Q. Chen and V. Koltun, “Full flow: Optical flow estimation
by global optimization over regular grids,” in The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016, .

[19] Y. Yang and S. Soatto, “S2f: Slow-to-fast interpolator flow,”
in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017, , .

[20] J. Long, E. Shelhamer, and T. Darrell, “Fully convolu-
tional networks for semantic segmentation,” in 2015 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015, pp. 3431–3440, , .

[21] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell, “Caffe:
Convolutional architecture for fast feature embedding,” in
Proceedings of the 22Nd ACM International Conference
on Multimedia, ser. MM ’14. New York, NY,
USA: ACM, 2014, pp. 675–678, . [Online]. Available:
http://doi.acm.org/10.1145/2647868.2654889

122


