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Abstract—Mining maximal frequent itemsets is an important 
research topic in data mining. The existing FPMAX 
algorithm for mining maximal frequent itemsets based on 
FP-tree necessitate to construct conditional subset trees 
recursively. While the amount of frequent itemsets is large, it 
will cause huge consumption both in terms of runtime and 
memory. Therefore, this paper proposes an improved 
algorithm FPMAX-direct for mining maximal frequent 
itemsets based on FP-tree. This novel algorithm will simplify 
the construction of the conditional subset trees by adding 
directly the branch of FP-tree whose support is no less than 
a user-specified minimum support threshold to the maximal 
frequent candidate itemsets. Experimental results show that 
FPMAX-direct algorithm outperforms FPMAX algorithm in 
dense datasets.  

Keywords-maximal frequent itemsets; FP-tree; FPMAX; 
FPMAX-direct 

I.  INTRODUCTION  

As an important branch of data mining, the association 
analysis is applied to find some interesting rules from a big 
scale of dataset. Mining the frequent itemsets is a basic and 
critical phases of the association analysis. In general, the 
amount of frequent itemsets is enormous and there is an 
inclusion relationship among the itemsets, which results in 
information redundancy. To some extent, maximal 
frequent itemsets can be used instead of frequent itemsets, 
because the maximal frequent itemsets encompass all the 
information on all frequent itemsets. Besides, in some 
applications of data mining, we only need to mine the 
maximal frequent itemsets, so how to mining them quickly 
and effectively has been hot in current research.  

Since Agrawal proposes Apriori algorithm[1] to 
discover association rules in 1993, there have been many 
researchers putting forward lots of improved approaches 
based on it, whereas all of them have to scan database 
multiple times, which cause expensive consumption 
especially at the time the scale of the dataset is large. To 
overcome this problem, Han et al.[2] introduce a novel 
algorithm without candidate generation for mining the 
frequent itemsets over dataset. This algorithm is 
characterized by using an efficient and compact data 
structure named frequent pattern tree( FP-tree in short) to 
compress the dataset and only scans the database twice 
avoiding multiple database scans like Apriori algorithm. 
At present, the existing mining algorithms of the maximal 
frequent itemsets are mainly modifications based on 
Apriori or FP-trees. The Apriori-based algorithm mainly 
include Max-Miner algorithm[3], Pincer-Search[4], DMFI[5]. 
The algorithms based on FP-tree mainly include FP-
MAX[6] and DMFIA[7]. The Apriori-based algorithms 
usually adopt a series of pruning strategies to prune the 
search space. However, they all require multiple database 

scans and will generate large quantities of alternative 
itemsets that is expensive consumption both in term of 
runtime and memory. To avoid the shortcomings of the 
Apriori-based algorithms, the algorithms for mining 
maximal itemsets over big dataset are mainly based on FP-
tree. 

The algorithm proposed in this paper is also based on 
the data structure FP-tree. After research on FP-MAX 
algorithm, we find that this algorithm needs traversal in the 
header table to obtain the conditional pattern bases, and 
then builds the conditional FP-trees. While the dimension 
of the dataset is large, constructing conditional FP-trees 
will cause memory overflow and cost much time. 
Therefore, this paper proposes the FPMAX-direct 
algorithm to overcome those drawbacks to a certain extent, 
which makes use of some strategies as follows: adding 
directly the itemsets whose support is no less than the 
predefined minimum support threshold to MFCS-tree, only 
using the others to build the conditional FP-trees during 
traversing the corresponding prefix paths according to the 
header table, and besides adding a mark for each node of 
the FP-tree. Those can simplify the conditional FP-trees 
constructing and superset checking. At last, we evaluate 
the good performance of the FPMAX-direct algorithm by 
comparing the performance of FPMAX-direct against 
FPMAX on several datasets having various characteristics. 

II. RELATED KONWLEDGE 

A. Frequent itemsets and maximum frequent itemsets  
Let 1 2{ , ,.., }mI i i i�  be a set of different items with the 

quantity of m and = 1 2 nDB {T ,T ,..,T }  be a transactional 

database, where iT  is a transaction which contains a set of 

items in I . Assume the amount of transactions in a 
transaction database DB  is N  and itemset X  is a subset 

of Ι(X I) , we can define count(X)  as the numbers of 

transactions containing X in DB , thus the support of X  

can be calculated by count(X) / N .  

Definition 1. Given a minimum support threshold 
minSup  which is the occurrence frequency in the database, 

if support(X) minSup� , the itemset X  is defined as 

frequent itemsets. Meanwhile, the minimum support 

threshold number minCount = minSup N� . 

Definition 2. For any frequent itemset X , if there is 

no frequent itemset ( )Y Y I�  such that X Y� , the 

itemset X  is called as the maximal frequent itemset. 
Property 1. All the proper subsets of any maximal 

frequent itemset are not the maximal frequent itemset. 
Property 2. All the subsets of any frequent itemset are 

frequent. 
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B. Fp-tree and FPMAX Algorithm 
FP-tree proposed by Han in 2000 is a compact data 

structure which can store essential information about the 
frequent itemsets of a transactional database. In the FP-
tree, the itemsets consisting of a set of nodes of each path 
from the root to each descendant is corresponding to one 
transactional set of the transactional database. To ensure 
that the tree structure is compact and informative, only 
frequent length-1 items will have nodes , each of which is 
associated with a frequent item in the tree, and the tree 
nodes are arranged as some sorted order of frequent items. 
Nodes with the same item-name are linked in sequence 
via such node-links. 

FPMAX algorithm is an extended algorithm 
developed to discover maximal frequent itemsets based on 
the compact data structure FP-tree and FP-growth 
algorithm. To mine the maximal frequent itemsets, this 
algorithm requires to add every item in the header table 
into the set of head items(namely Head) according to the 
occurrence frequency in the database as the initial suffix 
and gather the corresponding conditional bases to 
construct the sub-FP-trees. In order to prune the process, it 
is necessary to check itemsets consisting of the header 
table of the sub-FP-tree union the suffix items whether is 
the subset of the maximal frequent itemsets which have 
been mined. If the answer is yes, skip the construction of 
this conditional FP-tree. Otherwise, we should gather the 
conditional bases to construct the conditional FP-tree and 
mine the sub-FP-tree till there is only single path in the 
sub-FP-tree. Then the itemsets consisting of the current 
header table of the sub-FP-tree union the corresponding 
suffix items are the maximal frequent candidate itemsets. 
Thus this method employs a MFI-tree-like data structure 
FP-tree to store the maximal frequent itemsets and check 
the candidates to identify the final maximal frequent 
itemsets. More details about FPM-AX algorithm can be 
referred to paper[6]. 

III. FPMAX-DIRECT ALGORITHM BASED ON FP-TREE 

A. Description of  the algorithm 
Similar to FPMAX algorithm, FPMAX-direct 

algorithm also need to facilitate bottom-up-depth-first 
traversal. FPMAX algorithm requires to traverse the 
header table in item’s frequency descending order to 
collect each item and then search the current FP-tree to 
gather the conditional pattern base of the item to construct 
the corresponding sub-FP-trees. This algorithm constructs 
the sub-FP-trees recursively without making the best use 
of some pruning strategies. Our algorithm FP-MAX-direct 
add one field called mark for each node in the FP-tree 
where mark registers whether this node has been added 
into the MFSC, that can prune the search space. We 
examine the mining process by starting from the bottom 
of the node-link header table. While following a node 

'ia s  node-links to collect the conditional bases, if the 

mark of the node is 1 and the count of the node is more 
than the predefined minimum support threshold, then we 
add directly the itemset consisting of all the items of the 
path from the root to the current node into the set named 
MFSC, Meanwhile, if the mark of the node is 1 and the 
count of the node is less than the threshold, we gather 

them for the next phrase to construct the conditional FP-
trees. By employing those, we can simply the construction 
of the sub-FP-trees, consequently the runtime will be 
reduced largely. 

B. The algorithm flew 
Algorithm 1: Mining Maximal frequent candidate 

itemsets 
Input: FP-tree(T) created from the transaction database 

D with all nodes of the tree with the field of the mark and 
predefined minimum support s. 

Output: a dictionary storing the maximal frequent 
candidate itemset 

Procedure MFSCALL(preFix,HeaderTable,T,s) 
{ 
(1)for item in T.HeaderTable.keys() 
(2)   MFSC,ConPatBase=FinMFSC_ConPatBase(pre-

Fix,HeaderTable[item][1],s) 
(3)   if MFSC!=None 
(4)       for each m in MFSC 
(5)              if subsetChecking(m,MFSC-tree) is false 
(6)                   updateMFSC_tree(m) 
(7)                   add m into MFSCALL 
(8)    if ConPatBase!=None 
(9)    Construct item’s conditional FP-tree Ti and 

initialize Ti 

(10)       MFSCALL(prefix,Header,Ti,s) 
} 

Algorithm 2: gathering the conditional pattern bases 
and the MFSC 

Input: the current node of the tree, predefined support 
threshold s and the suffix. 

Output: the MFSC and the conditional pattern bases   
Procedure FinMFSC_ConPatBase(prefix,treeNode,s) 
{ 
(1) While(treeNode!=None) 
(2) { if treeNode.count>s and treeNode.mark==1 
(3)        FindPrefixPath and treeNode.mark=0 
(4)        checkMFSC(prefixPath) 
(5)        add prefixPath into MFSC 
(6)   else if treeNode.mark==1 and treeNode.count<s 
(7)          FindPrefixPath and add PrefixPath to 

ConPatBase 
(8)  Return MFSC,ConPatBase 
(9) }} 
Algorithm 3: identifying the final maximal frequent 

itemsets  
Input: the maximal frequent candidate itemsets 
Output: the maximal frequent itemsets 
Procedure MFS(MFSCALL) 
{ 
//MFSCALL is the dictionary 
(1) For key,item in MFSCALL 
(2)       Deal the item which is subset of others in 

MFSCALL[key] 
(3)  
              Insert MFSCALL[key] into MFS 
(4) Return MFS 
(5) } 
//FindPrefixPath is similar to the algorithm used to 

find the prefix path of one node in FPMAX algorithm.  
//subsetChecking is similar to superset-checking 

function in FPMAX algorithm.   
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IV. ANALYSIS OF AN INSTANCE 

A small transaction database is given in the Table 1, 
and the corresponding FP-tree of this database is given in  
Fig. 1 when the minimum support threshold is 0.3. 

TABLE I.  A TRANSACTION DATABASE 

Table 
Head 

Table Column Head 

TID Itemset 
Frequent 
length-1 
itemsets 

 T001 1,5,7,8 1,8,7 

 T002 1,2,5,7 1,2,7 

 T003 1,2,8 1,8,2 

 T004 1,2,7,8 1,8,2,7 

 T005 1,3,6 1 

 T006 1,8,9 1,8 

 T007 1,2,8 1,8,2 

 

Figure 1.  FP-tree with mark node 

The details of mining the maximal frequent itemsets 
over the database given in table 1 with FPMAX-direct is 
as following: 

(1) According the descending order of the occurrence 
frequency of the items in the header table, we mine the 
maximal frequent itemsets ending with 7 at first. As we 
can see from Fig 1, the marks of all the nodes of which 
item-name is 7 are all 1 and there are three prefix paths of 
the node with item-name being 7, besides the counts of 
two nodes are 1, less than the support threshold. Therefore, 
we build the sub-FP-tree for item 7 based on those three 
paths and the sub-FP-tree is shown in Fig 2. In the next 
phase, we should mine the sub-FP-tree in the Fig 2. We 
can find there is only one node with item-name being 1, 
its mark is 1 and its count is 3, more than the support 

threshold. So we should add {1,7}  into MFCS and 

meanwhile update the MFCS-tree, then set the dictionary 

� �	 
6 : 1,6MFCSALL � � �
 � , Fig 3 shows the updated 

MFCS-tree 

 

Figure 2.  The conditional FP-tree of the item 

1 

8 

2 

7 

Null

1

7

Figure 3.  The updated MFCS-tree 

 (2) In the following phase, we should process the path 
ending with the item 2. As is shown from Fig 1, there are 
two nodes with item-name being 2 and mark being 1. 
Starting from the tree nodes, we can gather three sets: 

	 
1,8, 2 : 3 ,	 
1,2 :1 . The support of set 	 
1,8,2 is 3, more 

than the minimum support threshold. So we can add this 
set into MFSC and set the mark of the nodes to 0, and 
update the MFSC-tree, then finally set the set 

� � � �	 
7 : 1,7 ,5 : 1,8,2MFSCALL � � � �
 � 
� � . The set {1,2}  of 

which support is less than the support threshold will be 
used to construct the sub-FP-tree. Because there is only 
one set with low support, we cannot build the conditional 

FP-tree and we will get the frequent set {1,2}  as the 

maximal frequent candidate itemsets, then use MFSC-tree 
for supersets checking and update MFSC-tree and 
MFSCALL. Fig 4 shows the updated MFSC-tree.

1 

8 

2 

7 

Null

1

7

2

8  

Figure 4.  The updated MFCS-tree 

(3) Similarly, Find the maximal frequent candidate 
itemsets ending with 8,1 in turn. Finally, we will get 

MFS {7: [[1, 6]], 8: [[1, 8,2]]}CALL � . 

(4) At last, we only need to process the dictionary to 
select the maximal frequent itemsets according to the key 

of the dictionary. We get MFS=[[1, 7][1,8,2]] . 

V. ANALYSIS AND COMPARISON 

In order to verify the outperformance of FPMAX-
direct compared with FPMAX. The experiment environ-
ment is Intel(R) Core(TM) i7-4790 CPU 3.6GHz, 8.00GB 
RAM and the operating system of Windows 10. The 
program is realized by Python. In the testing, we employ 
four datasets having various characteristics, two of them 
are mushroom and chess, dense public transaction dataset, 
and the rest are F1 and F2 sparse synthetic dataset. More 
details about those datasets are listed in Table 2. 

TABLE II.  CHARACTERISTICS OF THE DATASETS 
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Table 
Head 

Table Column Head 
Average 

length of a 

transaction 

Numbers of 
transaction Numbers of item 

Mush-

rooma 

23 8124 120 

Chess 37 3196 76 

F1 5 60798 7360 

F2 5 60810 17910 

 
In this paper, we carry out the comparison experiments 

of the two algorithms under the conditions of different 
minimum supports and datasets. Fig 5 shows the 
comparison of the runtime of the two algorithms in the 
condition of different minimum supports on the dataset 
mushroom. Fig 6 shows the comparison on the dataset 
chess. Fig 7 shows the comparison on the dataset F1. Fig 
8 shows the comparison on the dataset F2.  

Obviously, from the results, we can conclude that 
FPMAX-direct algorithm outperforms against FPMAX 
algorithm for mining the maximal frequent itemsets, 
especially on the dense dataset. 

VI.  CONCLUSION 

This paper proposes a novel algorithm FPMAX-direct 
for mining the maximal frequent itemsets based on FP-
tree. This algorithm employs some strategies that are 
adding filed of mark and branch-checking to simply the 
construction of the sub-FP-trees, which can improve the 
efficiency of mining the maximal frequent itemsets on 
dense datasets. The results of the experiments prove the 
outperformance of FPMAX-direct compared with 

FPMAX on dense datasets or under the condition of low 
support. Therefore, this novel algorithm can be applied in 
data mining task over dense datasets. 
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Figure 5 comparison on mushroom                                                                           Figure 6 comparison on chess 

                                    

Figure 7 comparison on F1                                                                             Figure 8 comparison on F2 
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