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Abstract: The Monte Carlo algorithm uses a random and 
weighted sampling set to represent and estimate the 
possible and position distribution of the mobile robot. To 
improve the accuracy of localization, a new localization 
algorithm combining the original MCL (Monte Carlo 
Localization) with EKF (Extended Kalman Filter) is
proposed in this paper. First, according to the initial set, 
the needed particles are collected in the space and the 
mean value of particles are calculated. Second, the best
global features LG are extracted from the sensors’
measurements. Finally, EKF is used to update the current 
state and covariance of the robot and exclude the useless 
particles. Simulations and experiments proved that the 
proposed algorithm is superior, for the localization 
particles distribute tightly around the moving robot with
lower location error.

Keywords Monte Carlo Localization, Sampling,
Extend Kalman Filter, Mobile robot.

I. INTRODUCTION

In the field of robotics, the predictions of a dynamic 
model of an autonomous robot are often updated by the 
values of the robot’s sensors. This problem is often 
called “Localization”, which can be formulated as a 
sampling problem [1]. Localization is an important part 
of autonomous motion of mobile robot, determining the 
exact position of the robot in an unknown environment 
[2]. Moreover, reducing location errors is a meaningful 
issue in the field of autonomous robotics.

According to available types of knowledge and the 
difficulties, localization problem can be divided into 
three sub-problems: position tracking, global 
localization and the kidnapped robot problem [3]. In the 
position tracking problem, it assumes that the robot 
knows its initial pose and can keep track of its 
movement, maintaining precise estimates of its pose in a 
known environment with relatively small noise.
However, the global localization problem is more 
challenging. In this case, with no information of initial 
positions, the robot has to estimate the pose in the 
following process through control data and sensors data. 
To solve the initial localization problem, Hua proposed a

guaranteed outlier minimal number estimator (OMNE) 
based on set inversion via interval analysis [4]. In 
addition, the kidnapped robot problem appears when a
well-localized robot is teleported to some other place 
without being told. Robot kidnapping can be caused by 
many factors [5], which can be divided into two 
categories – real kidnapping and localization failures.

Among position tracking algorithms, EKF is one of 
the most popular approaches [6]. Due to the restrictive 
nature of the belief representation, the common EKF is 
inapplicable to the global localization problem. To 
overcome this limitation, the multi-hypothesis Kalman 
filter is proposed [7]. It represents beliefs using the 
mixture of Gaussian distributions, thus can proceed with 
multiple and distinct hypotheses. However, this 
approach inherits the Gaussian noise assumption from 
Kalman filter, therefore all practical implementations 
extract low-dimensional features from the sensor data, 
ignoring much more information.

MCL is one of most common approaches to deal 
with the global localization problem. MCL is based on a 
particle filter that represents the posterior belief by a set 
of weighted samples [8]. One disadvantage of MCL is 
the heavy computational burden. To obtain a reliable 
localization result, a certain number of particles will be 
needed. Actually, each particle can be seen as a 
pseudo-robot, which perceives the environment using a 
probabilistic measurement model. At each iteration, the 
virtual measurement takes large computational costs if 
there are hundreds of particles. In addition, not
recovering from robot kidnapping is another 
disadvantage. If this pose happens to be incorrect, MCL 
is unable to recover from this global localization failure.
Zhang proposed the augmented MCL algorithm to partly 
solve the kidnapped robot problem by adding random 
samples [9]. 

This paper will improve the location precision and 
reliability by combing EKF and MCL. The organization 
of the present paper is as follows. An overview of the 
research on robot localization is briefly introduced in 
Section 1. Section 2 mainly describes the basic concepts
of the localization algorithm, including MCL, EKF. 
Section 3 proposes a new method to improve the 
sampling particles around the moving robot and increase 
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the localization accuracy. Section 4 provides 
experimental results. Finally, main conclusions are 
discussed in Section 5.

II. MONTE CARLO LOCALIZATION

MCL is based on a particle filter, which represents 
the posterior belief   by a set of   of  weighted 
samples distributed according to this posterior. As a 
consequence, the more intensive the region is populated 
by samples, the more likely the robot locates there:

� � � �� �
1,...,

,n n
t t t

n N
S s �

�
� (1)

where each particle 
� �n
ts with 1 n N� � denotes a 

concrete instant of the robot’s pose at time t. The 
number of particles N may be a fixed value or changing 

with some quantities related to the belief 	 
tbel s . The
� �n
t� is the non-negative numerical factor called 

importance factor.
The basic MCL algorithm is depicted in Table 1, 

which calculates the particle set St recursively from the 
set St-1 with the latest control ut, measurement zt and 
the map m.

Table 1 The Basic MCL Algorithm
Basic MCL Algorithm, adapted from ref.

1: Input: St-1, ut, zt, m
2: tS =St=�
3: For n=1 to N do
4: Generate a particle � � � �	 
1~ , ,n n

t t t ts p s s u m�

5:
Calculate an importance factor 
� � � �	 
,n n
t t tp z s m� �

6: Add � � � �,n n
t ts � to tS

7: End for
8: Normalize t�
9: For n=1 to N do
10: Draw � �n

ts with importance factors � �n
t�

11: Add � �n
ts to St

12: End for
13: Output: St

In Table 1, Line 4 generates samples
[ ]n
ts based on 
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n
ts � , tu and m , and the pair 	 
[ ] [ ]
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product distribution,
	 
 	 
[ ] [ ] [ ]

1 1, ,n n n
t t t tp s s u m bel s� �


              (2)
In terms of the literature, the distribution is called the 

proposal distribution. Line 5 calculates the importance 

factor 
� �n
t� for each particle 

� �n
ts .

� �n
t� is used to correct 

the mismatch between the proposal distribution and the 

desired target distribution.
� �n
t� is the probability of the 

measurement tz under the hypothetical state 
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incorporates the measurement tz into the particle set,
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where the normalization � is a constant. To make 
the weighted particle set tS distribute according to the 

posterior belief 	 
tbel s , resampling is implemented by
lines 9-12. After resampling, the particle set is 

distributed according to 	 
tbel s .
III.  Modified MCL

Usually, MCL algorithm uses a simple probability 
model of robot motion to predict robot’s position and 
orientation distribution instead of using particle 
distribution. However, the less weight of noise will still 
occur in the process of rapid degradation of the 
phenomenon of particle. Due to many uncertain factors 
in the process of localization, this paper tries to use EKF 
to update the state of the initial particles. New update

method is shown as follows. First, state 
ˆ

tX �

at time t
is predicted. Then, the observation information is 
estimated by the information of the line GL . Third, the 
Kalman gain is calculated and the state is updated 

according to the actual observation information
ˆ

tX �

. Last,

particles 
i
tX are gained from the sampling particles 

	 
ˆ ,t tX P
and replace tP with zero as the proposed 

distribution of next period.
The combined localization algorithm is implemented 

in three steps as illustrated in Fig.1.
Step1: collecting the useful messages from the 

sensors. The first step accepts the map m as the input. It 
outputs a measurement by EKF. Step2: calculating SER.
Step3: Localization. The last accepts as input the particle 
set St-1. Step2 and 3 run online.

EKF

Calculating
SER

Localiztion

Offline

Online

EG
m

3DG

tz

SER

tS

1tS �

tu

tz

Fig.1 The process of the combined algorithm
In this paper, the fiber optic gyro is used as an 

internal sensor to measure the direction of the robot. The 

mean value of the angle 1
D

t� � and the mean value 1
G
t� �

are substituted for 1t� �� by
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The nonlinear function of the mileage meter model 
	 
1 1,t tf X U� � is Taylor expansion, which is as follows,
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In the update period, the actual distance values s
of the laser is used. In this paper, the UTM-30LX laser 
can get a number of 181 part data per cycle. According 

to 	 
t tp s X , by multiplying the probability of the ray 
observation, the observation probability of a single 
sweep in the position can be obtained by

C 	 
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ombined with the following models, it should be 

normalized to meet 1g d� �� � .
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In order to increase the accuracy, a modified 
algorithm combining MCL with EKF is proposed, which
is shown in fig.2. The matching failure criteria is set as 
follows:

thW W�(                            (9)
where W is the sum weight, thW is the threshold 

value and � is the coefficient. 
Initial

Estimate the current
state of the robot at t

Using the EKF method to
update the current state and

covariance of the robot

Normalized particle weight,
calculate the current particle

mean and covariance

Update the particle
weights according to
the improved LRF

sensing model

Resampling

Filtering of laser
data

Perceived
environmental

information

Fig.2 Flowchart of the modified MCL algorithm

The proposed EKF and MCL fusion localization 
algorithm is described as follows.

Initial: Set the initial states, orientation of the mobile 
robot, and the parameters needed in the initialization 
process. Then collect particles in the space according to 
equation 1.

Calculate the mean value of particles according to 
equation 2.

Combined with global map information, the best 
global features GL are extracted from the sensor's 
sensing information according to equation 3. Using the 
EKF method to update the current state and covariance 
of the robot according to equation 4.

Filter the observation data of the sensor, and put 
forward the data of the dynamic obstacles. Then, update 
the weight of each particle in the sum of particles.

Calculate the sum of the weight of the particles, the 
matching of the sampling distribution and the sensing 
information of the laser range finder is tested, and only 
the criterion is established to match successfully
according to equation 5 and 6.

Normalized particle weight, calculate the current 
particle mean and covariance according to equation 7.

Based on the number of particles identified in step 5,
the normalized particle set is calculated and compared 
with the boundary conditions according to equation 8.

Return to step 2.

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, detailed simulation and experiment
are given to compare the differences between the
proposed algorithm and the original MCL. This section 
uses MATLAB as the simulation platform. 
A.Simulation results

(a) Step=5           (a) Step=5

(b)Step=10            (b)Step=10 

©Step=15           (c) Step=15
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(d)Step=22         (d) Step=19

Fig 3. The original MCL         Fig 4. The modified MCL

In experiments, the initial position of the mobile 
robot is unknown, and the global positioning particles 
are initialized with 150 particles for uniform distribution. 
Fig. 3 and Fig. 4 show simulation results of the standard 
MCL algorithm and the proposed fusion algorithm with 
convergence and distribution, where the black dots 
represent particle locations. The process of fusion 
algorithm, respectively, listed in the iteration 5, 10, 15 
times the status of the positioning. In the fifth iteration, 
comparing Fig. 3 (a) and Fig. 4 (a), it shows that the 
standard MCL algorithm still has a lot of particle 
distribution in the map, and the proposed algorithm is 
more concentrated. In the 10 times, standard MCL 
localization algorithm didn’t locate successfully. In the 
15th iteration, from Fig.3 (c) and Fig. 4 (c), standard 
MCL could not locate robot’s real position, and this
proposed algorithm outputs true position of the robot. It 
shows that the new algorithm uses less time to find its 
true positions. In addition, the proposed algorithm in the 
iterative 19 times can locate successfully. In addition, 
detailed location errors between the two algorithms are 
given in Fig.5, which shows that the modified MCL has 
the lower errors. 
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Fig 5. Location Error

B. Experimental results

The experiment is performed on the Turtlebot robot 
which is shown in Figure 5(a). It is equipped with a 
Kinect and a UTM-30LX to measure the environment. 
The programs is written in C++ on Robot Operation 
System, running on laptop CPU Core i5-2430 2.4 GHz. 
Figure 5(b) shows the experimental environment, and 
the robot need to move from the first point to the last 
point.

       (a)Turtlebot           (b) Experimental Environment

Fig. 6 Experimental Setting

Firstly, by using ROS system a new 2D grid map
was created. In the created map, the initial pose of the 
robot is given. Figure 7 is the 2D grid map created in
this paper, the green dots represent the location of 
particle of the algorithm, if green particles tightly around
the TurtleBot, it means that positioning effect is very 
good. If particle orientation and TurtleBot deviation are
very powerful, the positioning effect is not good.

Fig. 7 Map of the experiment environment

Figure 8 shows is MCL positioning algorithm and 
the fusion algorithm in locating the particle distribution, 
Figure 8(a) representation is the traditional MCL 
algorithm in locating the particle distribution and Figure
8(b) for the fusion location algorithm of particle 
distribution, comparison can be found, this fusion 
algorithm in locating particles tightly around the around 
the TurtleBot, and original MCL localization algorithm 
in the positioning of location of particle distribution 
throughout the map and not tightly around the mobile 
robot illustrate positioning effect is not very good.

(a) original MCL      (b) modified MCL

Fig.8 Localization particles between different algorithms
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V. Conclusions

In this paper, a new fusion localization algorithm is 
proposed to improve the accuracy of location for the 
mobile robots. The resulting system runs on a platform 
based on TurtleBot. The synthesis results showed few 
hardware resources consumption, which demonstrates the 
suitability of the proposed architecture. Moreover, the 
accuracy of the location is improved by combing MCL 
and EKF. The simulation results also prove that the 
proposed localization algorithm improve the motion 
estimation accuracy compared with existing methods. The 
future work would address to the issue of the fusion 
algorithm in the multi-robot localization problem.
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