
More Accurate Estimation of Shortest Paths in Social Networks

Chaobing Feng, Ting Deng

Beijing Advanced Innovation Center for Big Data and Brain Computing
School of Computer Science and Engineering, Beihang University

Beijing, China
fengcb, dengting@act.buaa.edu.cn

Abstract—The shortest distance query between two given
nodes is a fundamental but critical operation over social
networks. Due to the computational efficiency of accurate
methods is too low to be adopted for large-scale networks,
recent researches about the shortest distance estimation
mainly focus on approximate methods, in particular using
landmark-based indexing strategy. A proper balance between
computation rate and precision is greatly needed as the error
of conventional landmark-based strategy is intolerable.

In this paper, we analyze the deficiency in existing land-
mark embedding approaches. This paper mainly presents
Local Subgraph Query (LSQ) algorithm for calculating the
shortest path by dint of landmark embedding information.
Besides, we propose an improved version of LSQ, termed
Batch Subgraph Query (BSQ) algorithm, by aggregating
landmarks and query nodes to raise accuracy. Experimental
results on real-world datasets show that our methods outper-
form most of the state-of-the-art algorithms with significant
estimation error decrease and few time penalty increases in
social networks.

Keywords-shortest distances; query optimization; social
networks;

I. INTRODUCTION

Computing the shortest distance between given pair

of nodes is a fundamental and frequently-used operation

in graph algorithmics. With the rapid growth of social

networks scale, the classical algorithms like BFS, Dijk-

stra [6] are no longer applicable to online query. Thus,

some researchers divert their’s attentions to more efficient

algorithms such as A∗ [7], which relies on a heuristic

approach to find the shortest path. To achieve higher

computing speed, landmark-based [8] approaches have

come in sight.

Based on the initial landmark-based algorithms, later

studies propose certain improvement strategies corre-

spondingly, such as graph pruning [9], compression [10]

and so on. However, the accuracy of above optimization

methods is still passable. By analysising the deficiencies

of those methods, we propose several improved measures

at different modules of the landmark-based method.

Challenges. The core challenges to the shortest path query

can be attributed to time and space consumption. For the

precomputation stage, the selection of landmarks has been

proved to be a NP-hard problem [2], so we ought to devise

an efficient selection measure. Then, the improvement to

estimation accuracy should not be achieved at the expense

of a high increase in the indexing complexity of landmark

embedding. Besides, the complexity of the algorithm itself

should be concise, or it will be too complicated to apply

for different computing scene.

Contributions. Aiming at above challenges, the main

contributions of this paper are summarized below: 1) We

devise an outstanding landmarks selection scheme with

consideration of the degree and distribution of nodes. 2)

Based on landmarks set, we put forward LSQ to get

more reliable approximate estimation. 3) We also pro-

pose improved schemes, termed as BSQ, by aggregating

landmarks and query pairs for building a more sufficient

subgraph compared to LSQ. 4) We design a mount of

contrast experiments to check out the effectiveness of our

plan.

Organization. The rest of the paper is organized as

follows. In Section 2, we introduce relevant literature and

related work. In Section 3, we describe the problems and

give the related definition used in this paper. In Section 4,

we propose several novel algorithms, including landmark

selection, LSQ and BSQ. In Section 5, we perform

extensive experiments on large-scale social networks and

analyze the experimental results. Conclusions are reported

in Section 6.

II. RELATED WORK

Landmark embedding techniques have been widely used

to estimate distance in the social network [1]. The related

works about methods mainly include the selection of

landmarks in precomputation stage and the optimization

of query algorithms. Most landmark-based methods adopt

a random selection strategy, while others like [2], [3] take

heuristic strategy.

Qiao et al. [4], [5] propose a novel shortest path

tree based local landmark scheme and some optimization

techniques, e.g. landmark indexes and graph compression.

Greco et al. [11] propose some novel efficient incremental

algorithms working both in main memory and disk. Akiba

et al. [13], [14] propose a new exact method for dynamic

shortest path queries on large-scale networks by pruning.

III. PRELIMINARY

Network Graph. Let G = (V,E) denote a graph with

|V | nodes and |E| edges. For simplicity, we consider G
is unweighted and undirected social network in the paper,

but all the ideas can be easily applied to other weighted

and/or directed graphs.

The Shortest Paths and Distances. Given a pair of

nodes(u, v), denoted as pair(u, v), and our purpose is to

314

2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science

978-1-5386-7445-1/18/$31.00 ©2018 IEEE
DOI 10.1109/DCABES.2018.00087

compute one of the shortest paths of pair(u, v). We denote

the exact shortest path as sp(u, v) in graph. Meanwhile,

let s̃p(u, v) denote the estimation of pair(u, v) calculated

by approximation methods.

Path Approximation. Given path p < u0, u1, ..., udp
>,

q < udp , udp+1, ..., udp+dq > with distance dp, dq respec-

tively. Then concatenating two paths as path pq through

nodes udp
, and the distance of pq is dp + dq . The initial

approximation methods replace sp(u, v) with s̃p(u, v) and

the approximation error(u, v) of which is denoted by:

error(u, v) =
ds̃p − dsp

dsp
, dsp ≤ ds̃p. (1)

Basic Landmark Embedding Algorithm. Before the

query, we should precompute the landmark-embedding,

which composed of the shortest paths and related dis-

tances, to support triangle inequality for calculating s̃p.

The number of landmarks, record as k, is determined by

the demand of accuracy, due to the positive correlation

between k and approximate precision. Based on landmark-

embedding, denoted as l1, l2, ..., lk, the calculation process

of Basic Landmark Embedding(BLE) Algorithm for an

arbitrary pair(u0, v0) is shown below: 1) Compute the

estimation through landmark l1, denoted as s̃pl1(u0, v0),
and get the estimation of each landmark in the same. 2)

Compute the minimum estimation from s̃pl1(u0, v0) to

s̃plk(u0, v0) as estimation of pair(u0, v0).

Problem Statement. Given a graph G, sometimes it makes

sense to compute all/any pairwise distances, the corre-

sponding algorithms are typically referred to as APSP. In

order to facilitate the experimental analysis, we assign the

k to 100 uniformly.

IV. SUBGRAPH QUERY SCHEME

In this section, we introduce a novel landmark-based

shortest paths query algorithms. It consists of two major

stages: 1) Landmark selection and precomputation to get

landmark-embedding. 2) Approximate shortest path query.

A. Landmark Selection

The landmark selection of initial landmark-based al-

gorithms is a random selection, also known as global

selection, whose approximate error is up to 50%. For

all we know, the landmark selection methods based on

degree couldn’t do better than centrality metrics, whereas

the computation complexity of excellent metrics is too

high to be used in the total graph. This suggests us to

choose a graphic partitioning method aiming to solve

above problem. We select the partitioning method named

METIS [12] though it’s higher computing efficiency, lower

space requirements and better quality partitions. The ba-

sic idea behind METIS is the multilevel graph partition

algorithm, which first coarsens graph down to a few

hundred vertices, a bisection of this much smaller graph is

computed, and then this partition is projected back towards

the original graph, by periodically refining the partition.

Our landmark selection method first uses METIS to cut

total graph. In each subgraph Gi, we select the node with

the highest priority as landmark li. The priority formula

for each node u0 is:

PrioGi(u0) =
DegreeG(u0)

AvgDisGi
(u0)

(2)

where the numerator indicates the degree of u0 at G,

the denominator indicates the average distance from u0

to others at Gi. Compared to the metric of the whole

graph, our scheme can avoid the landmarks gathering

together. The dense landmarks distribution would lead to

even worse estimation in most cases because of lower

coverage.

B. Local Subgraph Query Algorithm

In this subsection, we analyse the defects of existing

landmark-based algorithm and propose LSQ.

Here we introduce a scenario to demonstrate the compu-

tation process of A, which has been introduced in section

3. As illustrated in Figure 1, solid node l1 is a landmark;

u0 and v0 are query nodes, recorded as pair(u0, v0); the

path < l1, l
′
1, b, a, u0 > and < l1, l

′
1, c, v0 > are the

shortest paths of pair(l1, u0) and pair(l1, v0) separately,

also known as landmark embedding. The solid links in

figure, like < a, b > and < b, c >, represent real

unweighted edges; otherwise, the dotted links such as

< u0, a > represent simplified edges which leave out

several unnecessary nodes between endpoint of the links.

According to BLE, its estimation s̃pl1(u0, v0) would be

< 2+1+1+ 2+ 2+3+2 = 13 >, which corresponding

path < u0, a, b, l
′
1, l1, l

′
1, c, v0 >.

u0

a
b c

v0

l′1 l1

2

2

3 2

Figure 1: Shortest Path Query Graph for LSQ

It’s easy to see the link< l1, l
′
1 > has been counted

twice, causing a non-ignorable approximate error. As a

consequence, many improvements use LCA to eliminate

repeating edges like < l1, l
′
1 >. Note that the LCA of

pair(u0, v0) in l1-rooted tree is node l′1. Compared to

landmark l1, the l′1 is a more query-dependent landmark

of pair(u0, v0) and the estimation of l′1, denoted as

s̃pl′1(u0, v0), is more exact that of landmark l1:

s̃pl′1(u0, v0) ≤ s̃pl1(u0, v0) or s̃pl′1(u0, v0) = s̃pl1(u0, v0)− 2 ∗ d<l1,l′1> (3)

Actually, we could get more accurate paths by leading

excess links between nodes on landmark-based paths ex-

cept links located on landmark-based paths. That is to say,

we build a graph, denoted as Gl(u, v) consist of nodes on

landmark-based paths. The Gl(u, v) is maximum common
subgraph between G and the fully connected graph of

nodes on landmark-based paths pu,l, pv,l. As illustrated

in Figure 1, the excess link of Gl1(u0, v0) is < b, c >,

as well as the approximate path correspondingly become

< u0, a, b, c, v0 >, whose distance is < 2+1+1+2 = 6 >.

315

Compared to path < u0, ..., l1, ..., v0 >, whose distance

is 13, the approximate path of LSQ has shortened half

the distance. The LSQ is depicted in Algorithm 1, where

the purpose of function buildLocalGraph(G,S) is to

obtain the maximum complete subgraph of graph G and

node-set S. The function getSssp(G, u, v) can get single-

source shortest path for pair (u, v) in graph G, which

implemented by BFS to unweighted graph and Dijkstra
to weighted graph under normal conditions.

Algorithm 1: LSQ-Local Subgraph Query Algorithm

Input: A query pair (u0, v0)
Output: s̃p(u0, v0)-The shortest path estimation of

(u0, v0)
1 s̃p(u0, v0) :=∞;

2 for li ∈ landmarkSet do
3 Load node-set Sli(u0, v0) on path embedding

from disk;

4 Gli(u0, v0) := buildLocalGraph(G,Sli(u0, v0));
5 s̃pli(u0, v0) := getSssp(Gli(u0, v0), u0, v0);
6 if s̃pli(u0, v0) < s̃p(u0, v0) then
7 s̃p(u0, v0) := s̃pli(u0, v0);
8 end
9 end

10 return s̃p(u0, v0)

C. Batch Subgraph Query Algorithm

In order to further improve the effectiveness of this

method, we propose BSQ algorithm, which ensemble

distinct query pairs and landmarks to build a subgraph,

used for processing query pairs involved in this batch

subgraph.

u0

a
b c

v0
e d

f gu1 v1

l′1 l1

l2

2

2

3 2

5 6

5 7
2

2

Figure 2: Shortest Path Query Graph for BSQ

For instance, we consider the ensemble batch scene

of two landmarks and two query pairs, whose process

mode is analogical with the case with more landmarks and

query pairs. The batch subgraph produced by pair(u0, v0),
(u1, v1) in Figure 2, denoted as GL < (u0, v0), (u1, v1) >,

combined by GL(u0, v0) and GL(u1, v1). The union graph

of two graphs can be understood as the union of nodes and

edges set of them. Obviously, the full graph in Figure 2 is

exactly the batch subgraph of pair(u0, v0) and (u1, v1),
just take landmarks l1 and l2 into total landmarks set L.

As illustrated in Figure 2, compared to local subgraph

Gli(u0, v0), the batch subgraph GL < (u0, v0), (u1, v1) >
introduces more helpful links as < e, f >, < f, g >
and < g, v0 > for querying pair(u0, v0). As a result, the

approximate shortest path of pair(u0, v0) change to be <
u0, e, f, g, v0 >, whose distance is < 1+1+1+1 = 4 >.

The BSQ is depicted in Algorithm 3.

It is obvious that each local subgraph of LSQ is a subset

of BSQ’s batch subgraph, which ensures the accuracy of

BSQ must be optimal. Although batch subgraph is even

bigger than local subgraph, but the former avoids calcu-

lating subgraph time and again for different query pairs.

Thanks to the diameter of social networks is ordinarily

short, the extra expenses compared with BLE can be

ignored in view of the advance of accuracy.
Algorithm 2: BSQ-Batch Subgraph Query Algorithm

Input: A query pair set P, which consist of k query

pairs : (u1, v1), (u2, v2),..., (uk, vk)
Output: s̃p-The shortest path estimation of P

1 SLP := ∅;

2 for li ∈ landmarkSet do
3 for (uj , vj) ∈ P do
4 Load node-set Sli(uj , vj) on path embedding

from disk;

5 SLP := SLP
⋃
Sli(uj , vj)

6 end
7 end
8 GLP := buildLocalGraph(G,SLP);
9 for (ui, vi) ∈ P do

10 s̃p(ui, vi) := getSssp(GLP, ui, vi);
11 end
12 return s̃p

V. EXPERIMENTS

In this section, we conduct comprehensive experiments

to evaluate the performance of the proposed algorithms.

All algorithms were implemented in Java and tested on

an Ubuntu server using one 3.40 GHz CPU and 8 GB

memory.

A. Dataset Description

Table I: NETWORK STATISTICS

Dataset |V | |E| D d′

Facebook 4,039 88,234 8 4.7

Slashdot 82,168 948,464 11 4.7

YouTube 1,134,890 2,987,624 20 6.5

(a) Facebook (b) Slashdot (c) YouTube

Figure 3: Shortest Distance Histogram

Facebook1. Facebook data was collected from survey

participants using Facebook app.

Slashdot2. Slashdot is a technology-related news website

introduced in 2002, where users can tag each other as

friends or foes.

YouTube3. A YouTube video-sharing graph of over 1

million users and almost 3 million links that include a

social network.

1http://snap.stanford.edu/data/egonets-Facebook.html
2http://snap.stanford.edu/data/soc-Slashdot0902.html
3http://snap.stanford.edu/data/com-YouTube.html

316

The test networks and their properties are listed in table

1. The D and d′ are diameter and 90-percentile effective

diameter separately. Figure 3 represents the histogram of

the actual shortest distance distribution over the 1,000

query pairs in each dataset.

B. Evaluation Metrics

It is expensive to exhaustively test all pairs in the

dataset, so we randomly sample 1000 pairs and compute

the average relative error (AvgErr) on the sample set.

The formula for computing AvgErr is:

error =

∑
error(u, v)

1000
(4)

Besides, the query processing time per pair and the embed-

ding index size are also within the scope of consideration.

C. Experimental Results

We have implemented three different query methods,

including BLE, LSQ and BSQ, under identical dataset,

query pair set and landmark number(k=100). The query

pair sets are selected by random and priority(proposed

in subsection 4.1)-based ways, expressed as Random and

Centrality separately. Figure 4 shows the average error

and table 2 shows the number of correct query pairs

results. Experimental results show: 1) Our LSQ obtains

a significant increase in accuracy compared to BLE;

From LSQ to BSQ, the test effect has risen steadily,

along with nearly all the correct solutions are obtained.

2) Our landmark selection scheme is completely better

than random way. The Centrality landmark selection is

especially efficient for BLE. On the other hand, the LSQ
and BSQ have better robustness for different landmark

sets.

(a) Facebook (b) Slashdot (c) YouTube

Figure 4: The average error under different query method

of each dataset

Table II: CORRECT PAIRS NO.

Facebook Slashdot YouTube

Random

BLE 246 24 1

LSQ 1000 976 978

BSQ 1000 998 991

Centrality

BLE 990 767 898

LSQ 1000 986 986

BSQ 1000 1000 999

D. Comparison with Other Query Algorithms

As we know, the TreeSketch algorithm proposed in

[1] prominently outperforms the others in the accuracy

of approximate query, so we compare our BSQ with

TreeSketch. We uniformity set k to 100, landmark se-

lection to Centrality and test dataset to YouTube for a

fair comparison. The comparison result are illustrated in

table 4. By comparison, we can learn BSQ outperforms

TreeSketch in each evaluation index. Beyond that, LSQ
needs same Index Size with BSQ but can query faster than

the other two methods. Thus we can see that if we pay

more attention to accuracy, we will choose BSQ instead

of LSQ for faster query efficiency.

Table III: COMPARISON RESULTS

Result error Query Time(ms) Index Size(GB)

TreeSketch 0.0006 25.84 10.2

LSQ 0.0029 0.53 5.9

BSQ 0.0002 21.52 5.9

VI. CONCLUSION

In this paper, we first present a landmark selection

method which is largely better than initial random ways

for social networks. Next, a series of subgraph query

algorithm are proposed, known as LSQ and BSQ for

short, which get a significant increase in the approximation

accuracy, yet with few time and space consumption thanks

to the very short diameter of social networks. Extensive

experimental results demonstrate the accuracy and effec-

tiveness of our shortest path query scheme.

ACKNOWLEDGMENT

Feng and Deng are supported in part by NSFC

61133002 and 61602023.

REFERENCES

[1] A. Gubichev, S. Bedathur, S. Seufert, and G. Weikum, “Fast and accurate
estimation of shortest paths in large graphs,” in Proceedings of the 19th ACM
international conference on Information and knowledge management. ACM,
2010, pp. 499–508.

[2] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis, “Fast shortest path
distance estimation in large networks,” in Proceedings of the 18th ACM
conference on Information and knowledge management. ACM, 2009, pp.
867–876.

[3] Z. Qi, Y. Xiao, B. Shao, and H. Wang, “Toward a distance oracle for billion-
node graphs,” Proceedings of the VLDB Endowment, vol. 7, no. 1, pp. 61–72,
2013.

[4] M. Qiao, H. Cheng, L. Chang, and J. X. Yu, “Approximate shortest distance
computing: A query-dependent local landmark scheme,” IEEE Transactions
on Knowledge and Data Engineering, vol. 26, no. 1, pp. 55–68, 2014.

[5] M. Qiao, H. Cheng, and J. X. Yu, “Querying shortest path distance with
bounded errors in large graphs,” in International Conference on Scientific
and Statistical Database Management. Springer, 2011, pp. 255–273.

[6] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[7] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems Science
and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[8] A. V. Goldberg and R. F. F. Werneck, “Computing point-to-point shortest
paths from external memory.” in ALENEX/ANALCO, 2005, pp. 26–40.

[9] A. V. Goldberg, H. Kaplan, and R. F. Werneck, “Reach for a*: Efficient
point-to-point shortest path algorithms,” in 2006 Proceedings of the Eighth
Workshop on Algorithm Engineering and Experiments (ALENEX). SIAM,
2006, pp. 129–143.

[10] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry, “3-hop: a high-compression indexing
scheme for reachability query,” in Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data. ACM, 2009, pp. 813–826.

[11] S. Greco, C. Molinaro, and C. Pulice, “Efficient maintenance of all-pairs
shortest distances,” in Proceedings of the 28th International Conference on
Scientific and Statistical Database Management. ACM, 2016, p. 9.

[12] G. Karypis and V. Kumar, “Metis – unstructured graph partitioning and sparse
matrix ordering system, version 2.0,” Tech. Rep., 1995.

[13] T. Akiba, Y. Iwata, and Y. Yoshida, “Fast exact shortest-path distance queries
on large networks by pruned landmark labeling,” in Proceedings of the 2013
ACM SIGMOD International Conference on Management of Data. ACM,
2013, pp. 349–360.

[14] T. Akiba, Y. Iwata, and Y. Yoshida, “Dynamic and historical shortest-path
distance queries on large evolving networks by pruned landmark labeling,” in
Proceedings of the 23rd international conference on World wide web. ACM,
2014, pp. 237–248.

317

