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Abstract—This paper proposes a new gradient method to
solve the large-scale problems. Theoretical analysis shows
that the new method has finite termination property for two
dimensions and converges R-linearly for any dimensions.
Experimental results illustrate first the issue of parallel
implementation. Then, the solution of a large-scale problem
shows that the new method is better than the others, even
competitive with the conjugate gradient method.
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I. INTRODUCTION

We are interested in investigating new gradient methods

for the solution of linear system

Ax = b, (1)

where A ∈ R
n×n is symmetric positive definite (SPD) and

b ∈ R
n. This problem is equivalent to the minimization

of a convex quadratic function

f(x) =
1

2
xᵀAx− bᵀx. (2)

Gradient methods generate a sequence of the form

xk+1 = xk − αkgk, k = 0, 1, . . . , (3)

where gk = Axk − b. It is well known that the steepest

descent (SD) method [1] performs poor in most cases,

where the steplength can be written as follows

αSD
k =

gᵀkgk
gᵀkAgk

. (4)

The iterates generated tend to asymptotically alternate

between two directions [2]. In contrast, the conjugate gra-

dient (CG) method [3] is often the method of choice that

will terminate in at most n iterations. It is very attractive

because of its high efficiency and low storage requirement.

Nonetheless, CG iteration depends strongly on the search

of direction calculation, i.e., any derivation such as round-

off errors can seriously degrade performance [4].

In the past several decades, a renewed interest for

gradient methods has appeared since Barzilai and Borwein

[5] proposed two efficient nonmonotone steplengths

αBB1
k =

gᵀk−1gk−1

gᵀk−1Agk−1
. (5)

αBB2
k =

gᵀk−1Agk−1

gᵀk−1A
2gk−1

. (6)

The motivation consists in approximating the Hessian and

imposing some quasi-Newton properties. Some theories

and experiments have shown that BB methods have good

performance and are competitive with CG methods when

low accuracy is required or small perturbation exists [4].

The convergence has been proven by Raydan [6]. Further-

more, Friedlander et al. [7] provided a general framework

under the name of “gradient method with retards” that

SD and BB both belong to it, as well as several alternate

methods proposed later [8], [9], [10].
Motivated by the two-dimensional finite termination

property, Yuan [11] provided a somewhat complicated

steplength

αY
k =

2√(
1

αSD
k−1

− 1
αSD

k

)2
+

4gᵀ
kgk

sᵀk−1sk−1
+ 1

αSD
k−1

+ 1
αSD

k

, (7)

where sk−1 = xk − xk−1. He gave two algorithms and

some variants were investigated further by Dai and Yuan

[12]. Among these methods, the second variant (DY) is the

most efficient one according to the experiments in [12],

where iterates are generated of the form

αDY
k =

{
αSD
k , k mod 4 < 2,

αY
k , otherwise.

(8)

In this paper, we address the properties of cyclic gradi-

ent methods, especially their parallel behavior. We propose

a new algorithm based on the Yuan steplength, which has

also the two-dimensional finite termination property. In

the next section, we introduce the cyclic gradient methods

and propose our new steplength. In Section III, we give the

convergence results of the new method. Some numerical

results are presented in Section IV. Finally, a concluding

remark is shown in Section V.

II. CYCLIC GRADIENT METHODS

Friedlander et al. [7] proposed an ingenious framework

that gives rise to a great number of potentially efficient

algorithms. Firstly, assume that m ∈ N represents retard

that allows to employ the information from previous

iterations. Let

k̄ = max{0, k −m}, (9)

then a collection of possible choices of steplength can be

set as follows

αGMR
k =

gᵀτ(k)A
ρ(k)gτ(k)

gᵀτ(k)A
ρ(k)+1gτ(k)

, (10)

196

2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science

978-1-5386-7445-1/18/$31.00 ©2018 IEEE
DOI 10.1109/DCABES.2018.00058



where

τ(k) ∈ {k̄, k̄ + 1, . . . , k − 1, k
}
, (11)

and

ρ(k) ∈ {q1, . . . , qm} , qj ≥ 0, (12)

where k ∈ N. The next theorem summarizes the conver-

gence result in [7].

Theorem 1 (Friedlander et al., 1999). Consider the linear
system (1) with A ∈ R

n×n is SPD and b ∈ R
n, where

x∗ = A−1b is the exact solution. Consider the gradient
method (3) being used to solve (1) and the steplength αk

given by (10). Then the sequence {xk} converges to x∗
starting from any point x0.

For a proof of the above theorem, see [7]. Incidentally,

several potential algorithms were provided therein, includ-

ing the first cyclic gradient method under the name of

cyclic steepest descent (CSD) as suggested in [8], which

can be summarized as follows

αCSD
k =

{
αSD
k , k mod m = 0,

αk−1, otherwise.
(13)

Notice that if we choose ρ(k) = 0 and τ(k) = k̄ +
1, . . . , k − 1, k, then (10) becomes CSD method,

which satisfies the Theorem 1. On the other hand, Dai [8]

proposed a variant called cyclic Barzilai-Borwein (CBB)

method. They suggested that

αCBB
k =

{
αBB1
k , k mod m = 0,

αk−1, otherwise.
(14)

Similarly, if we choose ρ(k) = 0 and τ(k) = k̄, k̄ +
1, . . . , k − 1, then (10) becomes CBB method.

Although these methods greatly speed up the conver-

gence, their motivation is too straightforward to further

accelerate the iterations, which relies on the nonmonotone

property to search the whole space without sink into any

lower subspace spanned by eigenvectors [4]. This allows

to reduce the gradient components more or less in the

same asymptotic rate [12].

The recent literature showed that Yuan steplength may

lead to efficient algorithms [11], [12]. All methods therein

have two-dimensional finite termination property, i.e., if

(8) is applied to a linear system in two-dimensional space,

then the algorithm will terminate in at most 3 iterations.

In general, such property seems not attractive in practice.

However, experiments showed that they perform well in

higher dimensions and are competitive with BB methods

for large-scale problems [12].

Inspired by the Yuan steplength, we suggest a simple

way of modifying steepest descent model to a cyclic

gradient method. Consider a steplength of the form

αYB
k =

{
αSD
k , k mod 3 = 0 or 2,

αY
k , k mod 3 = 1.

(15)

Here we modify the order of SD and Y compared to the

original YB formula, which is useful for the development

of the new algorithm. Apart from this change, (15) is

indeed the second algorithm propose by the pioneering

work of Yuan [11]. It keeps the two-dimensional finite

termination property that performs as well as BB for large-

scale problems and better for small-scale problems. We

could introduce simply the cyclic behavior based on (15)

of the form

∀m ∈ N, if k mod (3+m) > 2, then αk = αk−1. (16)

Besides, we find that De Asmundis et al. [13] gives an

interesting view about the iterations of SD method, where

the technique of alignment was proposed therein to force

the gradients into one-dimensional subspace and avoid the

zigzag pattern. Notice that the inverse of constant Rayleigh

quotient such as SD and BB steplengths has the similar

property. Thus, constant SD with retards can also give

rise to the alignment behavior and keep the nonmonotone

benefit. To achieve this goal, we need to impose a repeat

time to the zigzag process. Meanwhile, we want to keep

the process based on Yuan steplength in the first several

iterations. These motivations lead to a new method of the

form

αCY
k =

⎧⎪⎨
⎪⎩
αY
k , k mod (l +m+ 2) = 1,

αSD
k , k mod (l +m+ 2) < l + 2,

αk−1, otherwise,

(17)

where l ≥ 1 and m ≥ 1. Such formula seems complicated,

but indeed easy to understand. There are three components

consisting in (17): the first SD and Y are used to insure the

finite termination property; the parameter l acting on the

second part of SD is used to keep several zigzag iterations;

finally, the retard term m induces alignment and provides

nonmonotone behavior to leap from the lower subspace.

III. CONVERGENCE ANALYSIS

By the invariance property under any orthogonal trans-

formation, we can assume without loss of generality that

A = diag(λ1, . . . , λn), (18)

where

1 = λ1 ≤ · · · ≤ λn. (19)

We follow the convergence framework established by Dai

[8] and adapt it to our method. Let

G(k, μ) =

μ∑
i=1

g2i,k, (20)

where gi,k is the ith component of gk. A preliminary

property is defined as follows.

Definition 1 (Property A). Suppose that matrix A has

the form (18) with condition (19) holds. If ∃ξ ∈ N,

∃M1,M2 > 0, such that ∀μ ∈ {1, . . . , n − 1}, ∀ε > 0,

∀j ∈ {0, . . . ,min{k, ξ} − 1},
• λ1 ≤ α−1

k ≤M1;

• if G(k− j, μ) ≤ ε and g2μ+1,k−j ≥M2ε, then α−1
k ≥

2
3λμ+1,

then the steplength αk has Property A.
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The convergence framework of Dai can be deduced from

Property A, stated as follows.

Theorem 2 (Dai, 2003). Consider the linear system (1)

with A ∈ R
n×n of the form (18) and b ∈ R

n. Consider
the gradient method (3) being used to solve (1). If the
steplength αk has Property A, then the sequence {‖gk‖}
converges to 0 R-linearly for any starting point x0.

For a proof of the above theorem, see [8]. Many

gradient methods have Property A as mentioned in [8],

e.g., the gradient method with retards (10). Inspired by

the demonstration therein, we now develop a convergence

result for the CY method.

Theorem 3. Consider the linear system (1) with A ∈
R

n×n of the form (18) and b ∈ R
n. Consider the gradient

method (3) with steplength (17) being used to solve (1).
Then the steplength αCY

k has Property A.

Proof: Note that (17) has three alternate steplengths,

whereas the SD updating process and the constant process

using the last SD steplength both follow the framework

(10), which has been proven to have the Property A [8].

Therefore, we only investigate the Yuan steplength.

Recall that Yuan steplength has the following property(
1

αSD
k−1

+
1

αSD
k

)−1

< αY
k < min

{
αSD
k−1, αSD

k

}
, (21)

which is given in [11]. Hence,

λ1 ≤ 1

αSD
k

<
1

αY
k

<
1

αSD
k−1

+
1

αSD
k

≤ 2λn. (22)

Then the first condition of Property A holds by setting

M1 = 2λn. For the second one, let M2 = 2 and ξ = 1,

which yields j = 0. Suppose that

G(k, μ) ≤ ε, g2μ+1,k ≥M2ε, (23)

for all μ ∈ {1, . . . , n− 1}, and ε > 0. Hence, the inverse

of Yuan steplength becomes

1

αY
k

>
1

αSD
k

=
gᵀkAgk
gᵀkgk

=

∑n
i=1 λig

2
i,k∑n

i=1 g
2
i,k

≥ λμ+1

∑n
i=μ+1 g

2
i,k∑μ

i=1 g
2
i,k +

∑n
i=μ+1 g

2
i,k

≥ λμ+1
∑μ

i=1 g2
i,k

g2
μ+1,k

+ 1

≥ λμ+1
ε
2ε + 1

=
2

3
λμ+1

(24)

Hence, the second condition of Property A is satisfied,

which completes the proof.

IV. NUMERICAL RESULTS

We first address the issue of parallel implementa-

tion. The dot product is engaged in the computation of

steplength, which is the major obstacle of parallelization.

Here we have two strategies to realize this goal. Let Ai be
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Figure 1. Parallel CY method with GA implementation
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Figure 2. Parallel CY method with RA implementation

the band matrix stored in the ith processor. The first one

(Gather Algorithm, GA) is to gather the vector qi = Ai∗g
and execute dot product with global vectors, shown as

follows

Allgatherv(q, qi)
α = Dot(g, g) / Dot(g, q)

Then, the second one (Reduce Algorithm, RA) consists

in computing the dot product locally, shown as fol-

lows

ci = Dot(gi, qi)
Allreduce(c, ci, SUM)
α = Dot(g, g) / c

Besides, we can see that global gradient vector is used in

each iteration that we must proceed another Allgatherv
function to communicate with other processor. Let p
be the number of processors. The two experiments are

proceeded by Alinea [14] (see also, e.g., [15], [16], [17])

and JACK [18], [19] (see also, e.g., [20]) and results are

illustrated in Figures 1 and 2. We can see that generally the

results are not good because the first one imposes so much

computation and communication load, while the second

one causes indeed the problem of loss of precision. These

problems exist in all projection methods and by now we

have not yet managed to find a solution.

The second experiments are proceeded by Matlab

R2017b with a large-scale problem provided by The

SuiteSparse Matrix Collection [21], with n = 50000 and

349968 non-zero values. All parameters are chosen under
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Table I
GRADIENT METHODS WITH DIFFERENT RESIDUAL THRESHOLD

10−1 10−2 10−3 10−4 10−5 10−6

CG 58 735 2617 4251 5786 7535
CY 13 208 1153 4275 6181 \

CSD 27 212 1470 4357 6713 \
CBB 31 241 1965 7534 \ \
DY 15 200 1595 6415 \ \
BB1 356 984 2494 4612 8633 \
SD 61 5773 \ \ \ \

a training problem given in [5], such that l = 4,m = 3 for

CY, m = 3 for CSD, and m = 4 for CBB. Average results

are shown in Table I. We use bold numbers indicating the

most efficient algorithms under each residual threshold.

Backslash represents a number of iterations more than

10000. From Table I, we see that the CY method performs

better than other methods except CG. Although we do

not yet beat CG in high precision, our method is still

competitive in most cases. Specifically, we can see that

CY is stable throughout the iterations and much better

than CG when low accuracy is required.

V. CONCLUSION

In this paper, we have proposed a new gradient method

and shown that it is very competitive with CG method and

better than the others for large-scale problems. However, it

is still lack of theoretical evidence supporting such results.

It is also important to find a better parallelization strategy.

Therefore it still remains to study the properties and high

performance implementation of gradient methods.
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