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Abstract—Face clustering that aims to group faces from
the same people is a key component in face tagging and
attribute analysis. Nonnegative matrix factorization (NMF)
has shown competitiveness for clustering, but lacks of dis-
crimination in practical tasks. In this paper, we propose a
constrained multi-view NMF method with graph embedding
(GCMNMF) for face clustering. GCMNMF incorporates
the graph constraint and label constraint into an unified
framework. GCMNMF aims to seek latent discriminative
representations for multiple views, and maintain the within-
view geometric structure simultaneously. In addition, an
iterative optimization algorithm based on multiplicative rules
is developed to efficiently solve GCMNMF. Experimental re-
sults on two real-world datasets demonstrate the effectiveness
of the proposed method on face clustering tasks.

Keywords-nonnegative matrix factorization; multi-view
learning; face clustering; graph; constrained

I. INTRODUCTION

Multi-view face clustering has recently attracted a lot of

attention in face tagging and video retrieval tasks[1][2].

Multiple views, e.g., color, shape and texture features

can provide complementary information for the same

face. Integrating these multiple views appropriately has

been shown to outperform using only single view[3][4].

Until now many multi-view clustering methods have been

proposed. Among them, there are two main clustering

categories: spectral based method and subspace based

method.

Spectral based methods are mainly extended from

single-view clustering methods[5]. Co-training[6][7] trains

the classifiers by maximizing the mutual agreement on

two distinct views of the unlabeled data. Co-regularized

spectral clustering[8] implicitly combines graphs from

multiple views to achieve better clustering. Subspace

based multi-view clustering methods first project multi-

view data into a common low-dimensional subspace and

then apply any clustering method such as K-means[9]. A

typical subspace method is Canonical Correlation Anal-

ysis (CCA)[10], which analyzes linear correlations a-

mong multiple views. Nonnegative matrix factorization

(NMF)[11] that obtains interpretable representations with

the nonnegative constraint is a popular subspace method

for clustering[12][13]. However, most existing NMFs are

designed only for single view, which limits its use in

many real-world applications. A naive way to exploit

multiple views is to concatenate all the views into a single

one, and then apply NMF to the single feature. However,

this simple approach ignores the differences of statistical

properties among different views and usually cannot obtain

satisfactory results.

Recently, several NMF variants have been applied to

multi-view clustering, and have already achieved promis-

ing results. In [14], collective NMF (ColNMF) is proposed

for relational learning. ColNMF treats multi-view cluster-

ing as a latent space searching problem, and decomposes

each view into two matrices, i.e., projection matrix and

shared coefficient matrix. Liu et al. [15] propose multi-

view NMF (MNMF) by posing a novel normalization

strategy. For the semi-supervised scenario, Wang et al.
[16] propose semi-supervised multi-view NMF (SMNM-

F), which takes the label information as additional hard

constraint. NMF assumes that data points are sampled

from euclidean space, thus it fails to exploit the geometric

structure. Zhang et al. [17] propose a graph regularized

multi-view NMF (GMNMF) to consider the manifold

information. In GMNMF, the graph regularization is im-

posed on the latent representation and the parameters are

set automatically according to the data.

Motivated by recent progress in NMF, we propose an

improved multi-view NMF for face clustering by ex-

ploiting two constraints, including graph-based and label

information from few labeled faces. The basic idea is

to seek latent discriminative representations for multiple

views, and to maintain the within-view geometric struc-

ture simultaneously. GCMNMF can substantially improve

clustering by considering both with-view and cross-view

correlations. An efficient optimization scheme is develope-

d. Experiments on two real-world world datasets validate

the effectiveness of the proposed method.

In the following, we first briefly review some related

works. Then, we present the proposed method and report

the experimental results. Finally, we conclude the paper.
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Figure 1. The flowchart of the proposed GCMNMF. First, multiple
features are extracted from original images. Then the features are
further factorized by the proposed multi-view learning model, and graph
structure and partial label constraints are incorporated. Finally, the shared
coefficient matrice is used for clustering.

II. RELATED WORKS

This section briefly introduces a basic multi-view NMF

method, which is also named collective matrix factoriza-

tion (ColNMF) [14]. Some definitions are first provided.

Given a data set X = {(x1
i , x2

i , · · · , xm
i , yi), i =

1, · · · , n}, where xi = (x1i , x2
i , · · · , xm

i ) is the ith exam-

ple, xqi ∈ Rpq is the instance of the ith example in the

qth view, m is the number of views, and yi is its cluster

label. ColNMF aims at clustering xi into it’s corresponding

cluster label yi through each single view’s factorization

with the shared coefficient matrix. The objective can be

formulated as

min
Uq,V

F (Uq,V) =

m∑
q=1

‖Xq − UqVT ‖2, s.t. Uq ≥ 0,V ≥ 0,

(1)

where Xq represents all the samples of the qth view, Uq

represents the projection matrix of the qth view, and V is

the shared coefficient matrix.

III. APPROACH

ColNMF learns a shared view representation. However,

it fails to discover the geometrical structure of inner-

view space. On the other hand, partial label priori in-

formation is not considered in ColNMF, which limits

its use in real-world semi-supervised applications. This

section introduces the proposed constrained multi-view

NMF with graph embedding model (GCMNMF) to avoid

these limitations.

A. Formulation

1) Multi-view NMF Clustering Framework with Graph
Embedding: In multi-view learning, it is critical to analyze

the relationships within and without views. It is commonly

known that if data described in different views are related

to similar person, they are expected to share a certain

common structure[18]. On the other hand, the instances in

the same view have certain latent geometric structure[19].

In order to make the fusion of different views meaningful,

we optimize the following problem:

min
Uq,Vq,V∗ =

m∑
q=1

‖Xq − Uq(Vq)T ‖2F + λq‖Vq − V∗‖2F

+ μ
m∑
q=1

λqTr((Vq)T LqVq),

s.t. Uq ≥ 0,Vq ≥ 0,V∗ ≥ 0, ‖Uq
∗,j‖ = 1,

(2)

where Uq
∗,j denotes the jth column of U. Lq = Dq −Wq

denotes the Laplacian matrix of the qth, where Dq is a

diagonal matrix and Dq
j,j =

∑
l Wq

jl.

2) Discriminative Label Embedding: Assuming the

first l data points are labeled with c classes, then an

indicator matrix C can be constructed, where cij = 1 if

vi is labeled with jth class; or cij = 0 otherwise. Then,

the label constraint matrix A can be defined as follows:

A =

(
Bl×c 0
0 In−l

)
, (3)

To incorporate label information, we introduce an auxiliary

matrix Z with V = AZ, which can guarantee that data

from the same person have the same representation.

3) Overall Objective Function: Note that the constraint

‖Uq
∗,j‖ = 1 in Eq. (2) will make the optimization computa-

tion difficult. In order to simplify the optimization process,

we introduce auxiliary variables Qq for Uq , where Qq is

defined as:

Qq = Diag(
∑
j

Uq
j,1,

∑
j

Uq
j,2, · · · ,

∑
j

Uq
j,r), (4)

where Diag(·) denotes a diagonal matrix.

Considering Eq. (3) and Eq. (4), the problem in Eq. (2)

is equivalent to the following optimization problem:

min
Uq,Zq,Z∗ =

m∑
q=1

‖Xq − Uq(Zq)T AT ‖2F + λq‖ZqQq − Z∗‖2F

+ μ
m∑
q=1

λqTr((Zq)T AT LqAZq),

s.t. Uq ≥ 0,Zq ≥ 0,Z∗ ≥ 0.
(5)

B. Optimization

To minimize the objective function in Eq. (5), we adopt

iterative updating procedure.

1) Fixing Z∗, update Uq and Zq: When Z∗ is given,

each view is independent. For simplicity, U, Z and Q
represent Uq , Zq and Qq . The Lagrange function for each

view is as follow:

J = ‖X− U(Z)T AT ‖2F + λq‖ZQ− Z∗‖2F
+ μλqTr((Z)T AT LAZ) + Tr(ΦUT ) + Tr(ΨZT ).

(6)
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(a)

(b)

Figure 2. Some sample images from two face databases. (a) ORL
database. (b) Yale database.

Taking partial derivative of J with respect to U and Z, we

can derive the following updating rules:

Uik = Uik

(XAZ)ik + λq
∑n−l+c

j=1 ZjkZ∗jk
(UZT AT AZ)ik + λq

∑pq

f=1 Ufk

∑n−l+c
j=1 Z2

jk

,

Zjk = Zjk

(AT XT U)jk + λqZ∗jk + λqμ(AT WAZ)jk
(AT AZUT U)jk + λqZjk + λqμ(AT DAZ)jk

.

(7)

When computing Uq and Zq , we first compute Uq and

then normalize column vectors of Uq and Zq using Qq as:

Uq ← Uq(Qq)−1, Zq ← ZqQq. (8)

2) Fixing Uq and Zq , update Z∗: When U and Z are

computed over each view, we take the derivative of loss

function (6) over Z∗ and get close-form solution to Z∗:

Z∗ =
∑m

q=1 λ
qZqQq

∑m
q=1 λ

q
. (9)

After several iterations, the loss value can converge. Fi-

nally, we can obtain the representative features V∗ = AZ∗.
After we obtain the latent matrix V∗, the cluster label Y
is computed by K-means algorithm in this paper.

IV. EXPERIMENTS

This section evaluates the proposed methods by per-

forming face clustering on two public image databas-

es: ORL database and Yale database [20]. Some sam-

ple images are shown in Fig.2. For simplicity, raw

pixel values x1 ∈ R1024 and the local binary pat-

tern feature x2 ∈ R59 are extracted for further multi-

view data fusion. To evaluate the effectiveness and

efficiency, we present quantitative evaluations of our

proposed GCMNMF, and compare it with some relat-

ed methods: ConcatNMF[21], ColNMF[14], MNMF[15],

SMNMF[16], and GMNMF[17]. Additionally, NMFs with

single view (SV1, SV2) are also adopted as two baselines

for comparison. We utilize K-means to cluster the low-

dimensional shared representation and set the number of

clusters as the classes of faces. The clustering performance

is evaluated by clustering Accuracy (AC), which has been

widely used for clustering. For the semi-supervised label

embedding scene, we randomly choose 20% images from

each person as the available label information, and use

them to construct the label constraint matrix. Finally, we

mix the labeled images and unlabeled images as a whole

for face clustering tasks[22].

Table 1 and 2 report the clustering results on ORL

and Yale databases, respectively. From the experimental

results, we have the following conclusions:

(1) GCMNMF always outperforms two single-view

NMFs, which validates that GCMNMF can explic-

itly integrate the visual information among different

views and improve the face clustering performance.

(2) We observe that GCMNMF outperforms SMNMF

on both databases. This is mainly attributed to the

fact that the graph embedding technique is applied. It

shows that graph Laplacian regularizer can effectively

reveal the intrinsic geometrical structure within each

view.

(3) GCMNMF is superior to GMNMF. GCMNM-

F considers the semi-supervised label as additional

information, while GMNMF is unsupervised. It im-

plies that available semi-supervised priori information

plays an important role for face clustering.

V. CONCLUSION

This paper proposed an improved NMF algorithm by

considering local geometrical structure and partial label

information for multi-view clustering. Our model consid-

ers both the inner-view and inter-view relatedness among

multi-view data. For the formulated non-convex objective

function, we propose an alternative update scheme. The

experimental results on face clustering validate its superi-

ority over single-view and multi-view NMF methods.
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