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Abstract— Coupling of dual porosity flow and free flow arises 
in many important applications, e.g., groundwater system and 
industrial filtrations. Existing Stokes-Darcy types of models 
cannot accurately describe this type of coupled problem since 
they only consider single porosity media. With the support of 
lab experiment data we are developing a new coupled multi-
physics, multiscale model and an efficient numerical method 
to solve it. Furthermore, both the lab and field data provide 
the possibility to improve the accuracy of the model prediction 
through data assimilation. 

Keywords-component: fluid flow; reservoir modeling; data 
assimilation; high performance computing 

I.  INTRODUCTION 
In many real world problems and industrial settings, the 

free flow of a liquid and the confined flow in a dual porosity 
media are often coupled together and significantly affected 
by each other. However, the existing Stokes-Darcy types of 
models cannot accurately describe this type of coupled 
problem since they only consider single porosity media. 
Therefore, with the support of lab experiment data, we 
follow the general framework of Stokes-Darcy model and 
dual-porosity model to develop a new coupled multi-
physics multi-scale model and the corresponding numerical 
methods for accurately describing the coupling of the flow 
in dual-porosity media and the free flow. The resulting 
coupled dual porosity Navier-Stokes model has higher 
fidelity than the Darcy, dual porosity, Navier-Stokes, or 
Stokes-Darcy equations on their own. Furthermore, the field 
data provides the possibility to improve and demonstrate the 
accuracy of the model prediction through data assimilation. 

The coupling of porous media flow and free flow arises 
in many important applications, e.g., (a) hydrology 
problems, carbon sequestration, geothermal systems, and 
petroleum extraction in fractured reservoirs/aquifers or 
around horizontal wellbores, (b) coupled surface and 
subsurface flow, (c) biochemical transport and field-flow 
fractionation, (d) blood motion in lungs, solid tumors and 
vessels, (e) the mushy zone in alloy solidification, and (6) 
topology optimization of fluid flows. 

A traditional model for this type of coupling problems is 
the Stokes-Darcy model, which describes the free flow by 
the Stokes equation and the porous media flow by the 
Darcy’s law, and then couples these two equations through 
three interface conditions. While dual-porosity models have 
been widely used to describe naturally fractured porous 
media for different problems in hydrology, carbon 
sequestration, geothermal system, and petroleum extraction 
[1-7], this model itself does not consider the free flow in 
large conduits nor do existing Stokes-Darcy models 
consider a dual-porosity model when they couple the porous 
media flow with the free flow. Hence a new dual-porosity-
Navier-Stokes model is needed for a more accurate 
description of the coupled dual-porosity flow and free flow. 

II. MODELS 
First consider a simple example of a dual porosity 

subdomain ��  and a conduit subdomain �� , where � ��� � ��,  �� � �� � �, and the interface between the two 
subdomains is 	��, which is represented by the following: 

 
 
 
 
 
 
 
 
 
 
 
A traditional dual porosity model is given in ��  with 

matrix and micro fracture equations [8]: 
 


���
 ����� � � � ���� ���� � ��� (1) 


���
 ����� � � � ���� ���� � � � ��� (2) 
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where �  is the dynamic viscosity, ��  is the source/sink 
term,  � �  !"# $�� � ��%  measures the mass exchange 
between matrix and micro fractures, &  is a shape factor 
characterizing the morphology dimension of the micro 
fractures, ��'�� represents the intrinsic permeability in the 
matrix or fracture, ��'��  represents the pressure in the 
matrix or fracture,  
�'
�  represents the porosity in the 
matrix or fracture, and ��
'��
  represents the total 
compressibility in the matrix or fracture. 

In the conduit �� , the flow is governed by a Navier-
Stokes equation, 

 �()�� � *() � �+() � � � ,*()� �+ � -� � � () � .� (3) 

 
where ()  is the velocity, �  is the kinematic pressure, ,*()� �+ � /01*()+ � �2  is the stress tensor, 1*()+ �34 *�(� � �()5+ is the deformation tensor, 2 is the identity 
matrix, 0 is the kinematic viscosity of the fluid, and - is a 
general body forcing term. 

To combine the two separate models into a coupled 
system, we need four interface conditions on the interface 	�� based on the following three fundamental properties of 
dual-porosity media. 

• The matrix permeability in a dual-porosity media is 
critically low compared with the micro-fracture 
permeability. For example, in a shale or tight 
reservoir, the matrix permeability is usually 105 to 
107 times smaller than the micro-fracture 
permeability. 

• The matrix porosity is usually much larger than the 
micro-fracture porosity. For example, in a shale or 
tight reservoir, the matrix porosity is usually 102 to 
103 times larger than the micro-fracture porosity. 

• The shape factor &, which ranges from 0 to 1, can 
be determined according to the morphology and 
dimension of the micro fractures by using different 
types of formulas. 

See [9-13]. 
In the dual-porosity media with the above properties, the 

matrix system serves as the main storage space and the 
micro fracture system serves as the preferential fluid 
movement channel. Due to the critically low permeability in 
the matrix and the much faster flow in the micro fractures, 
the dual porosity model neglects the flows between the 
matrix and the conduits/macro fractures. That is, the dual 
porosity model assumes that the fluid drains from the matrix 
block into the adjacent micro fractures and then into the 
conduits/macro fractures. Since the matrix is assumed to 
only feed the micro fractures, the conduits/macro fractures 
do not directly communicate with the matrix, but only 
communicate with the micro fractures [14-18]. 

Following the idea in [19], the four interface conditions 
are given below. 

1. A no exchange condition between the matrix and 
the conduits/macro-fractures: 
 

���� ��� � *�6)7+ � .� (4) 

 

where 6)7 is the unit normal vector on the interface 
edges pointing from �� to ��. 
 

2. Conservation of mass: 
 

(� � 6)7 � ���� ��� � 6)78 (5) 

 
 

3. Balance of forces: 
 6)7,*()� �+6)75 � ��9 8 (6) 

 
 

4. Beavers-Joseph condition [20]: 
 �:;*,*()� �+6)7+ � 

 <=>?@�ABCD*E+:; �() �
��� ����� 

(7) 

 
where :; is the projection onto the local tangent 
plane on 	��, < is the Beavers-Joseph coefficient,  E � ��2 is the intrinsic permeability of fracture 
medium, and ?  is the number of spatial 
dimensions. 

The interface conditions play a key role and usually cause 
the major difficulty for interface problems. 

Finally, we need boundary and initial conditions in order 
to have a well posed system. Either Dirichlet or Neumann 
conditions are needed for the variables �� and �� on 	�, (� 
on 	�, ��*F� .+, ��*F� .+, and (�*F� .+. 

Usually it is extremely difficult and expensive to 
measure the fluid flow velocity to obtain the velocity data 
[21]. It is easier to obtain the flow rate data for the following 
defective boundary conditions on portions of the domain 
boundary GH, I � .�J�K �L [22]: 

 

M () � 6)7NOPQ � �H� I � .�K �L8 (8) 

 
Going back to the example at the beginning of this 

section, for m=2, we could have 
 
 
 
 
 
 
 
 
 
 
 

The solutions of a dual porosity Navier-Stokes model with 
these conditions are not unique and utilizing Lagrange 
multipliers for the defective boundary conditions leads to a 
saddle point problem. This boundary condition is difficult 
to use in the solvers we are developing. 
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III. TRANSMISSION CONDITIONS FOR A MULTI PHYSICS 
DOMAIN DECOMPOSITION  

A noniterative multiphysics domain decomposition 
method (MPDDM) has been developed [23-26] for solving 
the interface problem and is used at each time step of the 
data assimilation process described in Section IV. We 
avoid using an explicit scheme while using the information 
in the preceding time steps efficiently. At each time step, 
our method only needs a single multi-phase Navier-Stokes 
solve and a single multi-phase Darcy solve in parallel, 
which is optimal. 

We reorganize all the components in the physical 
interface conditions into Robin type boundary conditions 
on the interface with relaxation parameters specifically 
designed for the different scales of Darcy and Stokes flows 
in order to decompose different physical subdomains 
according to relevant physics in the multiphysics setting. 
Based on the normal interface conditions (4)-(7), the mixed 
transmission conditions on the interface are 

 

���� ��� � *�6)7+ � .� (9) 

 

R� ��� ��� � 6�� � ��9 � S�� (10) 

 6��T ,*(�� �+6�� � R�(� � 6�� � S�� (11) 
 �:*,*(�� �+6��+ � UV>W@
XY�Z*E+ :;(� � S[T  on 	��� (12) 
 

where S� , S� , and S[T  denote three auxiliary functions on 	 . Each component on the left sides of these mixed 
conditions directly comes from the three interface 
conditions. These four conditions enable us to decompose 
the original coupled system into two subproblems, the dual-
porosity equation and the Navier-Stokes equation. 
Therefore, the auxiliary functions S� , S� , and S[T  play a 
key role in the decomposition and the construction of the 
non-iterative algorithm, especially S[T  since it is 
responsible for the additional term from the Beavers-
Joseph condition. One advantage of these natural Robin 
type conditions is that it is not complicated to obtain the 
equivalence between the decoupled system and the original 
one. These equivalence conditions provide convenient 
tools to directly predict S�, S�, and S[T  on the interface at 
each time step based on the results from the previous time 
steps [27,28]. Then we can solve the decoupled dual-
porosity and Navier-Stokes equations independently at 
each time step based on the predicted S�, S�, and S[T . 

IV. DATA ASSIMILATION 
In order to fully make use of the field data to improve 

the prediction of the proposed model, we plan to develop a 
variational data assimilation method. For the variational 
data assimilation method, we can consider the following 
general evolution problem to illustrate the basic idea [29]: 

 �\�� � ]*\+� � ^ *.� _+� \`
ab � c� (13) 

 

where \ � \*�+ is the unknown function belonging for any � to a Hilbert space d� c ^ d, and ]ed f d is a nonlinear 
operator determined by the model. Let g � h4*i.� _j� d+ 
and k�kl � *���+l3'4. Define the cost functional by 
 

m*c+ � n/ kcko4 � M k�\ � \pko4 N��T
b  (14) 

 
where n ^ qr , \p ^ gstu v g  is the observation, and �e g f gstu is a linear operator. Then the variational data 
assimilation problem is to find the optimal control c that 
minimizes the cost functional m*c+ � wxyz^o m*{+  subject to 
equation (13). Following [29], the necessary optimality 
condition reduces the problem (13) to the system, where * 
represents the adjoint and |  represents the Frechet 
derivative: 
 

}~
����
 � ]*\+� � ^ *.� _+�
� ����
 � $]�*\+%�\� � ���*�\ � \p+� � ^ *.� _+�\`
ab � c� \�`
aT � .� nc � \�`
ab � .8

 (15) 

 
 
A new cost function will be defined for solving the 

interface problem to the prescribed accuracy and cost 
effectively. The adjoint problem will be derived similarly. 

We use a sensor-grid method [30-32] that is essentially 
a model reduction method that significantly reduces the 
computational cost. The basic idea to decrease the cost 
function as defined over the whole problem domain to a 
discrete cost function defined over the set of sensor 
locations. We briefly describe the basic procedure of this 
method by using the general evolution equation (13). 

Assume we have �u sensor locations �����a3��  and R�*�+ 
is the measurement of \ at the location �� and time �. Given � basis functions cH� I � J�K ��, assume \H is the solution 
of equation (13) with initial function cH. Then the sensor-
grid method is to find the initial data function 

 

c �� nHcH�
Ha3  

 
to minimize the discrete cost function 
 

�*n+ �� �� nH�
Ha3 \H$��� �% � R�*�+�4��

�a3 � 

 

� �H�
Ha3 *nH � �H+4� 

(16) 

 
where � � *�3�K � ��+T  contains penalty coefficients for � � *�3�K � ��+T , which is an a priori vector that is 
updated during the simulation to achieve the desired 
accuracy. Define the sensor-grid to be a grid using all the 
sensor locations as the vertices of the elements in the grid. 
Then a multi-scale interpolation technique [31-32] is 
utilized over the sensor-grid for solving the equation during 
the time evolution iteration. 

Applying the sensor-grid method and multiscale 
interpolation method to the dual porosity Navier-Stokes 
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model entails difficulties that have not been experienced in 
past Navier-Stokes applications. The constrained 
optimization components and the interface have a 
significant impact on the size of the sensor-grid in order to 
prove stability of the data assimilation process, which 
requires the analysis for the much more complex system. 

V. CONCLUSIONS 
We have presented a new dual porosity Navier-Stokes, 

multiphysics model combined with free flow and data 
assimilation that can be applied to wide variety of real world 
applications and is more accurate than single porosity 
models. 
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