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Abstract—With the arrival of the era of big data, the analysis 
and processing of massive data has become a very critical 
computing problem. This paper proposes a query 
optimization method based on SparkSQL and MongoDB. It 
analyzes the principle and compares it with other literature 
in order to draw the conclusion. The conclusion shows that 
when dealing with problems such as interactive SQL queries, 
the Apache Spark engine can reasonably decompose the 
tasks based on the dependencies between the massive data, 
thereby reducing the data query processing time and 
improving the operating efficiency. Also it is very suitable 
for storing some simple data with large amount due to 
flexible query and index of MongoDB. Obviously, the 
combination of the two can significantly improve the query 
speed of massive data. 
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I.�  INTRODUCTION  
With the widespread use of computers and the rapid 

development of the Internet, data has been growing 
explosively. How to deal with large-scale data has become 
a research hotspot [1]. In this context, the traditional data 
warehouse application has been difficult to meet the OLAP 
(Online Analytical Processing). Therefore, it is imperative 
to seek a new type of highly scalable data warehouse and 
efficiently analyze and process the data. Due to the 
emergence of Apache Spark which is new big data 
framework based on in-memory computing and can be 
deployed on the Hadoop platform, many companies 
gradually start using the Apache Spark platform. The most 
important function of the data warehouse is to perform 
OLAP and provide users with decisions, so the 
performance of SQL queries is very important. Then big 
data needs to be stored. MongoDB is a product between a 
relational database and a non-relational database. Its 
supported data structure is very loose, so it can store more 
complex data types. The biggest feature of MongoDB is 
that the powerful language query and high performance [2]. 

At present, there are many researches on the query 
method that combines the big data engine and the database. 
The literature [3] proposes a Hadoop-based distributed 
double-level index structure [3] to establish different 
indexes for different data types. Experiments show that 
The level of data retrieval is still slow; Literature [4] 
proposed Hadoop-based interactive big data analysis and 
query method, mainly to connect the HDFS, Hive and 
Hbase query test, the limitation is that only Hadoop and 

database Join queries, no optimization [4]; Literature [5] 
used Impala's big data query analysis [5], and literature [6] 
used Hbase for query method [6]. The above methods all 
have limitations not make deep research. Based on the 
above work, this paper proposes an optimization method to 
improve the query speed of massive data, and enhances the 
availability of the system. 

II.� RELATED TECHNOLOGY 

A.� Apache Spark 
Apache Spark, developed by the AMP Lab at the 

University of California, Berkeley in 2009, is a large data 
parallel computing framework based on in-memory 
computing. The basic flow of Spark operation is as follows: 
First, SparkContext is created by the Driver to perform 
resource application, task allocation and monitoring. The 
SparkContext constructs a DAG (Directed Acyclic Graph) 
based on the RDD (Shared Memory Abstraction) 
dependency. The DAG is submitted to the DAGScheduler 
for parsing into the Stage, and then each TaskSet is 
submitted to the TaskScheduler for processing; Executor 
apply for a task to SparkContext. Task Scheduler Issues 
Task to Executor and provides application code. The Task 
runs on the Executor, feeds the results back to the 
TaskScheduler, and then feeds back to the DAGScheduler 
[7][8]. 

 
Figure 1. � Apache Spark operation basic flow chart 

B.� MongoDB 
MongoDB is written in C++ and is an open source 

database system based on distributed file storage. It is a 
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type of NoSQL database that runs on Unix, Windows, and 
OSX platforms, supports 32-bit and 64-bit applications [9]. 
MongoDB is a scalable, high-performance, next-
generation database that features high performance, ease of 
deployment, ease of use, and convenient storage of data. 

MongoDB is a product between a balance relational 
database and a non-relational database. The traditional 
relational database generally consists of three levels of 
concepts: database, table, and record. MongoDB consists 
of three levels: database, collection, and document object. 
The data format it stores is a collection of key-value pairs. 
The key is a string, and the value can be any type in the 
collection of data types, including arrays and document 
objects. This data format, called BSON, is a binary 
serialization document similar to JSON [10]. 

III.� OPTIMIZATION 
The optimization method of this article includes two 

parts: paging method of MongoDB and SparkSQL. 

A.� Where-limit Optimization Paging Method 
The query optimization method provided in the 

MongoDB database is relatively simple. When the system 
processes a query request, the system selects the fastest 
query plan to execute, and the skip and limit functions are 
not considered when executing the query plan. Now 
database systems all store huge amounts of data. When 
paging queries are made, if the data that needs to be 
queried is behind a sorted collection, skipping a large 
amount of data is required to affect the data query 
efficiency, so this paper proposes a where-limit 
optimization paging method in large-scale data sets.  

This article divides the where-limit method into four 
steps: 

Step1: According to the query conditions to obtain the 
value of the keyword field, and store it in the keyword 
array; 

Step2: Use the count function to determine the total 
number of records in the database, and then calculate the 
total number of pages to display based on the number of 
records to be displayed per page; 

Step3: Get the keyword array according to the query 
conditions; 

Step4: Paging query by keyword in keyword array. 
The where-limit method is better than the skip-limit 

method because it avoids using the skip function and the 
system does not need to spend a lot of time to skip large 
amounts of data [11]. When using the skip-limit method for 
paging queries, the data offset of the paging (skip function 
parameter value) is prioritized, but with different offsets, 
the query time per page will be different: the larger the 
offset, the longer the query time will be. Where-limit uses 
a method to find an array of keywords to solve this 
problem. In the query process, the user only needs to find 
out the keyword array according to the query conditions, 
and then decide to skip number of records according to the 
index of the keywords in the array. The algorithm flow 
chart is shown in Figure 2. 

Enter the 
page number

Run the 
query and get 

output

 
Figure 2. � Where-limit optimization method flow chart 

B.� SparkSQL Optimization 
This problem often occurs in SparkSQL: After 

performing an aggregate operation such as join operation 
on an RDD, most tasks execute quickly, but individual task 
execute extremely slowly. For example, there are a total of 
100 tasks. 97 tasks are executed within one minute, but the 
remaining tasks take ten minutes. This situation is called 
data skew [12] and is very common in SparkStreaming and 
SparkSQL modules. 

For example, the ‘hello’ key, corresponding to a total 
of seven data on three nodes (as shown in Figure 3). These 
data will be pulled to handle the same task, and the ‘world’ 
and ‘yes’ keys correspond to one data. That is, the other 
two tasks only need to deal with a few of data. The first 
task at this time may be seven times as long as the other 
two tasks. The speed of the entire stage is determined by 
the slowest task. 
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Figure 3. � SparkSQL task allocation chart 

This situation will only occur in the shuffle process. 
Generally used operators that trigger the shuffle operation 
are: distinct, groupByKey, reduceByKey, aggregateByKey, 
join, cogroup, repartition, and so on. In general, the most 
straightforward and effective method for data skew is to 
reduce the number of such operators that trigger the shuffle 
operation. However, some data operations will still use 
these operators more or less, so this paper proposes a two-
stage aggregation for optimization. 

The core idea of this method is to perform two-stage 
aggregation (as shown in Figure 4). The first step is local 
aggregation, firstly add a random number to each key, such 
as a random number within ten, then the original same key 
becomes different. For example, (hello, 1) (hello, 1) (hello, 
1) (hello, 1) (hello, 1) (hello, 1) becomes (1_hello, 1) 
(1_hello, 1) (2_hello, 1) (2_hello, 1) (3_hello, 1) (3_hello, 
1). Then, after adding the random prefix, perform the 
aggregation operation. The result will become (1_hello, 2) 
(2_hello, 2) (3_hello, 2). Then remove the prefix of each 
key and will become (hello, 2) (hello, 2) (hello, 2). Make 
the aggregation operation again will get the final result 
(hello, 6). 
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Figure 4. � SparkSQL aggregate instance diagram 

The method is to change the original key to add a 
random prefix, so that the data originally processed by one 
task can be distributed to multiple tasks to perform local 
aggregation. It can solve the problem of processing 
massive data of a single task. Then remove the random 
prefix and perform global aggregation again to get the final 
result. The advantage of this method is that the data skew 
caused by the shuffle operation of the aggregation 

operation is better, and improve the performance of the 
Apache Spark significantly. 

IV.� EXPERIMENT 

A.� Experimental Environment and Datasets 
The experimental data set is the real-time water level 

data set of the Chu River from January 1, 2015 to July 24, 
2017, with a total of 18,910,865 records. The experimental 
environment is a small cluster of three computers. The 
processor is an AMD Ryzen 7 1700X, the memory is 32G 
Corsair DDR4 3000Mhz, the hard disk is the Samsung 
sm961 128g SSD, and the graphics card is ASUS. GeForce 
GTX 1060. 

The database selects MySQL and MongoDB. The 
Apache Spark version is 2.2.0, MongoDB version is 3.6, 
MySQL version is 5.7, and the integrated development 
tool is IntelliJ IDEA. 

B.� Experimental Analysis  
The experiment firstly was conducted by MySQL and 

MongoDB to import the dataset of Chu river. Then make 
some read and write operation. Finally, use the IDEA to 
connect to MongoDB through Spark, and invoke the 
SparkSQL and where-limit optimization methods to do 
research. 

(1) The time consumed by the two types of database to 
import the Chu river data set 

 
Figure 5. � MySQL and MongoDB import data time consuming 

When the amount of data is small, the efficiency of the 
two kinds of databases is almost the same. After the data 
volume level increases to tem million levels, the 
advantages of MongoDB become more and more obvious. 
Due to the multithreading operation recommended by 
MongoDB official (numInsertionWorkers), in essence, it 
can split the insert task into multiple threads. As you can 
see, MongoDB imports data faster than MySQL. 

(2) Query the lowest water level detected by each 
monitoring station 
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Figure 6. � Check the lowest water level detected by each monitoring 

station time consuming 

There are 70 monitoring stations in the data set of this 
paper. On average, there are 250,000 data in one 
monitoring station. If the query on stand-alone database 
with a data size of tens of millions, it will take a long time. 
However, under the Apache Spark platform and the 
optimized method, apparently the operating efficiency is 
very high. Moreover, this data size has not yet reached the 
Apache Spark performance bottleneck, 

This paper also compares the query speeds of other 
papers. In literature [4], Hbase and SparkSQL were used to 
query the dataset on the Hadoop cluster platform. The 
query execution time using the original method in 
literature [4] and the optimization method proposed in this 
paper is shown in Figure 7. g

 
Figure 7. � Comparison experiment diagram 

It can be seen that the method optimized in this paper 
has better query speed in this experimental environment 
and can satisfy the problem of slow query operation under 
massive data. When dealing with lightweight data, the 
Apache Spark platform can achieve very satisfactory 
results based on the advantages of its memory operations. 
Of course, due to the stability of the system and memory 
consumption issues, it has limitations when it comes to 
extreme high-level data. 

So the SparkSQL+MongoDB query optimization 
method proposed in this paper, this method is really 
helpful for improving the query speed, and can effectively 
improve the database query efficiency. 

V.� CONCLUSIONS 
This article first introduced the knowledge of Apache 

Spark and MongoDB, and use optimization methods 
proposed in this paper to conclude that it can effectively 
improve the speed of data query. Because data set and 
hardware configuration conditions are limited, it can not 
fully utilize the capabilities of Apache Spark. This paper 
aim to share experimental results and related knowledge 
for related users who are not yet understood and learning. 
Obviously, compared to simply using MySQL or 
MongoDB, the optimization method proposed in this 
article is a big lead in the query speed. Of course, this 
method still has limitations, hope to work hard to make 
improvements in the future. 
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