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Abstract—The implied volatility in the Black-Scholes mod-
el is assumed as a constant. However, empirical analysis
proves that the values of the implied volatility based on
the same underlying asset vary with the underlying asset
price, maturity date, time to maturity, and the strike price.
Ronald Lagnado and Stanley Osher and Chiarella proposed
the techniques for calibrating derivative pricing by solving
an inverse problem. In this paper, an improved model is
proposed. In which, the influence of the options with different
strike prices is distinguished by weights and the choices of
the weight functions are discussed. The approach we take is
numerically solving an inverse problem which is more solid
in theory than simple regression methods. Numerical results
show that our model has better adaptivity and accuracy than
traditional models.

Keywords-implied volatility; the inverse problem method; B-
S model; Poisson equation; options

I. INTRODUCTION

The option, as one of the most important financial

derivatives, its pricing problem has become a hot issue

among the fields of financial engineering. The Black-

Scholes (B-S) model [3] supposes that the implied volatil-

ity is a constant. While both the empirical analysis and

researches [6]show that the implied volatility obtained

from the B-S model with the market data, vary with the

underlying asset price, maturity date, time to maturity, and

the strike price. That means the implied volatility is a

function of these variables instead of a constant, which

shows a curve with smile skew [10] [11]. Therefore, it is

a key problem how to model implied volatility function

[7] for accurate option pricing.

At present, the methods of modelling implied volatility

include the methods based on statistical regression and the

methods based on the inverse problem. The statistical re-

gression methods construct the implied volatility function

by using regression methods to approximate the statistical

patterns between the implied volatility with strike price

and the time to maturity, which usually being partitioned

as the parametric models [5], semi-parametric models [2]

[11] and non-parametric models.

The method of modelling implied volatility based on

the inverse problem is to estimate the implied volatility

function by solving the reverse problem associated with

the B-S model and the observed market data. The method

was first proposed by Ronald Lagnado and Stanley Osher

in 1997 [9] in which they only considered initial prices of

options. In 2000, Chiarella et al. [4] extended the model

Figure 1. Maturity and time to maturity

by using the option prices in a period to replace initial

prices of options.

In this paper, we try to construct an implied volatility

model with fitting and forecasting ability improving the

Osher model. The different computing functions are used

to describe the implied volatilities related to the options

with different strike prices and the smile skew of the im-

plied volatility function may be explored. The difference

among the computing functions lies in the weights, which

is related to the strike prices and used to distinguish the

influence of option prices with different strike prices. The

weights are computed according to the difference among

the strike prices. By using the Euler-Lagrange method, the

model is converted to a Poisson Equation about implied

volatilities and solved by using the iterative method. The

experimental results show that the proposed model has

higher accuracy compared with the traditional models.

II. RELATED WORKS

A. Options and Black-Scholes Pricing model

An option O is a contract writing on an underlying

asset A that gives the owner of the option the right, but

not the obligation, to buy or sell A at a specified strike

price K on a specified date D (expiration). The action

buying or selling depends on the form of the option, the

former is called a call and the latter is a put. The maturity

T is the time from the day the option is written to its

expiration day. The current time t between 0 and T can

be considered as the maturity degree and τ = T − t is

the time-to-maturity. The relationship among t,T and τ is

depicted in Fig.1.

At the current time t , suppose the prices of the option

and the underlying asset are V and S respectively, then V
is a function related to S and t :

V = V (S, t). (1)

Under some ideal assumptions, the Black-Scholes mod-

el [3] illustrated that V and S satisfy the following
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equation:

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂

2V

∂S2
− rV = 0, (2)

where parameter r is the risk-free interest, parameter σ is

the implied volatility. These two parameters are supposed

as constants.

For simplicity, the call option is considered. The bound-

ary conditions of the above equation are as follows:⎧⎨
⎩

V (S, T ) = max(S −K, 0), for S ≥ 0,

V (0, T ) = 0, for 0 ≤ t ≤ T ,
∂V
∂S (S, t)→ e−q(T−t), as S →∞, for 0 ≤ t ≤ T .

(3)

Solving the (2) under the boundary conditions (3), the

following formula can be obtained for computing the price

of a call option:⎧⎪⎨
⎪⎩

V (S, T ) = S ×N(d1)−Ke−r(T−t) ×N(d2)

d1 =
ln S

K +(r+
σ2
2 )(T−t)

σ
√
T−t

d2 =
ln S

K−(r+
σ2
2 )(T−t)

σ
√
T−t

. (4)

where N(·) is the standard normal density distribution

function.

From above equations, one may find that K,T and σ
are the parameters of the option price. So, the formula (1)

can be rewritten as the following:

V = V (S, t;K,T, σ). (5)

B. Implied Volatility Model Based on the Inverse Problem

Due to the volatility smiles and/or term structures

explored by a lot of empirical analysis, Lagnado and Osher

[9] proposed that the implied volatility of the B-S model

is a function of underlying price S and the current time t
rather than a constant.Hence the B-S differential equation

(1) can be rewritten as following:

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2(S, t)S2 ∂

2V

∂S2
− rV = 0. (6)

Suppose the set ΦA includes all the options writing on

the same underlying asset in the market. The maturities

of the options in ΦA include Ti, 1 ≤ i ≤ N and the strike

prices may be Kj , j = 1, . . .M . Denote Oij be the option

with maturity Ti , the strike price Kj . At the maturity

degree t , the price of the asset A is S and the option

price Vij(S, t) (if there is not such option in the market,

the price of the option will be set with 0 ; and if there are

more than one such options, the price of the option will

be set the average) . Then the options set can be defined

as follows:

ΦA = {Oij |1 ≤ i ≤ N, 1 ≤ j ≤M}. (7)

In the other hand, if the implied volatility function

σ(S, t) is given, the theoretical price V (S, t;K,T, σ) of

the option Oij can be computed by solving the (6) under

the condition (3). A good σ(S, t) will make the error

between the theoretical option price and the market data,

|V (S, t;K,T, σ)− Vij(S, t)| , small.

From this point of view, Lagnado and Osher proposed

an energy functional. They considered the initial situation

of Oij . At this moment, t = 0, S = S0 . There is no

market price about Oij but the ask and bid prices V a
ij and

V b
ij . So the average of V a

ij and V b
ij is used to replace

Vij(S0, 0) . After these, they minimized the following

energy functional to obtain the best implied volatility

function:⎧⎨
⎩

F (σ) = ‖∇σ‖22 + λ
N∑
i=1

M∑
j=1

[V (S0, 0;Kj , Ti, σ)− V̄ij ]
2

V̄ij =
1
2 (V

a
ij + V b

ij).
(8)

where the term ‖∇σ‖22 is for regularization and λ > 0 is

a constant.

Chiarella et al. [4] extended the above model by using

the information during a period to replace the initial

information and proposed the following energy functional:

H(σ) = ‖∇σ‖22+

λ

N∑
i=1

M∑
j=1

∫ ∞

0

∫ Tcur

0

[V (S, t;Kj , Ti, σ)− V̄ij ]
2dtdS.

(9)

where Tcur is the current time.

III. A STRIKE-RELATED IMPLIED VOLATILITY MODEL

A. The Energy Functional of the New Model

The above two models assumed that σ = σ(S, t) ,

that means, the term structure explored by the empirical

analysis has been considered which is related to the time-

to-maturity (τ = T−t). But the other phenomena, implied

volatility smile, has not been considered yet.

In this paper, the implied volatility of an option is

assumed related to the current time t , the price of the

underlying asset S = S(t) at t , the strike price K and

the maturity T . That is,

σ = σ(S, t,K, T ). (10)

Fixing the maturity, for a given strike price K, there is a

corresponding implied volatility function σK = σK(S, t)
. Using the same symbols with Section II-B, a new energy

functional is proposed as following:

Lλ(σK) = ‖∇σ‖22 + λ

N∑
i=1

M∑
j=1

{αK(j)·
∫ ∞

0

∫ Tcur

0

[V (S, t;Kj , Ti, σ)− V̄ij ]
2dtdS}.

(11)

where αK(j) is the weight used for exploring the influence

of the options with the strike price Kj . The closer Kj to

K , the more influence of the price of the option with the

strike price Kj , and vice versa.

Similar to the [4], the minimization of the function-

al (11) can be converted to solve the following Euler-

Lagrange equation by using the variational method:

∂2σK

∂S2
+

∂2σK

∂t2
= λ ·

N∑
i=1

M∑
j=1

[αK(j)·

∂V (S, t,Kj , Ti, σK)

∂σK
V (S, t,Kj , Ti, σK − Vij)].

(12)
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(a) The results by using Gaussian kernel
function

(b) The results by using Bourke function (c) The results by using Parzen window
function

Figure 2. Simulated implied volatilities with K = 60 by using different weights

To solve (12), the boundary functions σK(S, 0) ,

σK(0, t) , σK(Smax, t),σK(S, tmax) need to be given. If

the price of the underlying asset is 0, the option writing on

it is invalid. Based on this, it is assumed that σK(0, t) = 0
. The other three boundary functions cannot be obtained

by theory and need to be fitted by using the market data.

B. The Choice of Weights

Suppose σK is the implied volatility related to the

options with the strike price K . The weight function

αK(j), 1 ≤ j ≤ M is used to explore the sampling

influence of the options with the strike Kj to σK .

Analysing the market data, it can be found that the option

with the strike price Kj has a greater influence to σK when

the distance from the strike price Kj to K is closer, and

a bigger weight is needed. In the other hand, considering

the stability of the (12), the weights must decrease when

the number of the sampling data increases. Based on these

consideration, αK(j) can use following functions:

1) Parzen window function [8]:

αK(j)

{
1, Kj − h ≤ K ≤ Kj + h
0, else

. (13)

2) Gaussian kernel function:

αK(j) =

1√
2π

e
−(K−Kj)

2

2

M∑
l=1

1√
2π

e
−(K−Kl)

2

2

. (14)

3) Bourke function [1]:

αK(j) =

1
(Kj−K)2

M∑
l=1

1
(Kl−K)2

. (15)

C. Numerical Computing

An iterative method is used to solve (12) numerically

in this paper. Given an initial implied volatility value, the

theoretical prices of the options of the right- hand side

term of the equation V (S, t,Kj , Ti, σK) can be computed

by solving the Black-Scholes Equation where S(t),Kj , Ti

are the market data at the current time t . Then, this value

is used to solve (12) and obtain a new implied volatility

value. This new implied volatility value then is used to

replace the given initial value and the above computing

steps are repeated until a good implied volatility value

obtained.

In order to numerical implementation, it is necessary to

be discretized along S and t directions. The market data

may not be in the grids. In this case, simple interpolations

can be used to obtain necessary data.

IV. NUMERICAL SIMULATION

To test the feasibility of the algorithm, the real implied

volatility function is usually assumed to be known as

σreal. Using it, the corresponding real option price Vij

(simulating market data) can be computed by solving the

B-S model.

During the validation, the implied volatility values ob-

tained by solving the proposed model is compared with

σreal to analyze the effectiveness of the model.

In the following tests, similar to the [4], the real

implied volatility function σreal is set as σreal = 0.6(1−
e−0.03(S+K)) . The other parameters are set as following:

the underlying price 1.6 ≤ S ≤ 160, and the step size of

S is 1.6; the maturity is fixed as T = 10/252,0 ≤ t ≤
10/252 , and the step size of t is 1/252; the strike price

50 ≤ K ≤ 160 and the step size of K is 10; the risk-free

rate is 0.05; the parameter λ = 1 .

A. Comparison of simulation errors with different weight
functions

Three weight functions are given in Section III-B. The

average simulation errors |σ − σreal| by using different

weight functions are given in Table I where h = 0 for

the Parzen window function. The simulation results of the

implied volatilities with K = 60by using different weight

functions are given respectively in Fig.2. One may find

that the errors are small for all three weight functions. In

the other hand, the Gaussian kernel function has a best

result due to the continuity of σreal which may not be

appropriate in the real market situation.

B. Comparison of simulation errors with different models

Table II show the average simulation errors by using the

model proposed in [4] and proposed model in this paper in

which the weight function is chosen as the Parzen window

function with h = 0 . Fig.3 shows the simulation results

by using the model of [4] and the proposed model in this

paper. From the Table II, one can find that, compared with
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Table I
SIMULATION ERRORS BY USING DIFFERENT WEIGHT FUNCTIONS

Strike price Average errors
Gaussian kernel Bourke Parzen window

50 3.8115e-05 0.0016 0.000106
60 4.1069e-05 0.0032 0.000119
70 4.3268e-05 0.0050 0.000159
80 4.4901e-05 0.0068 0.000208

140 0.0013 0.0028 0.000255
150 0.0246 0.0253 0.024020

Table II
SIMULATION ERRORS BY USING DIFFERENT MODELS

Strike Price K Average errors by using Average errors of
the model in [4] the proposed model

60 0.0017 0.000119
70 0.0022 0.000159
90 0.0030 0.000228
100 0.0032 0.000293
120 0.0028 0.000353
130 0.0023 0.000337

Figure 3. Implied volatility of real situation, Parzen window and [4]
when K = 60

Table III
SIMULATION ERRORS IN DIFFERENT BOUNDARIES

Strike Price K Average errors with linear Average errors with real
function boundaries boundaries

60 0.004121627 0.000119
70 0.004333177 0.000159
90 0.004605998 0.000228
100 0.004692007 0.000293
120 0.004802928 0.000353
130 0.004837897 0.000337

the methods proposed by the [4], our proposed model has

a better precision.

C. Influence of different boundary conditions

The boundary conditions of the above simulation exper-

iments use the real boundary function of the simulation

implied volatility function σreal . In fact, it is difficult to

obtain the boundary functions of the market data because

that the sampling data in the boundary is sparse. In this

test, a liner fitting function of the boundary function of

σreal is used for as the boundary conditions which aims

to find the influence of the boundary conditions. Table III

shows the simulation errors in different boundaries.

One may find from the simulation experiments that, the

errors are sensible with the boundaries. Good boundaries

are necessary to have high accurate results.

V. CONCLUSIONS

In this paper, based on the inverse problem method,

a strike-related implied volatility model is proposed. In

the new model, the implied volatility is related to the

option s strike price. And the options with different strike

price have different influence on the underlying implied

volatility. The simulation experimental results show the

feasibility of the new model. Further search will focus on

how to realize the model by real market data.
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