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Abstract—In quantum-behaved particle swarm optimization 
algorithm (QPSO), the mean best position is employed as a 
global attractor to attract the particles for searching solutions 
globally. To improve the QPSO global convergence 
performance further, this article proposes an improved QPSO 
algorithm based on joint modeling of individual particles 
evolutionary process (IEQPSO). To ascertain the effectiveness 
of the proposed variant of the QPSO algorithm, several 
benchmark test functions have been considered. The 
experimental results show the superiority of the proposed 
approach on benchmark test functions. To assess the 
effectiveness and feasibility of the proposed method on real 
problems,  it was used for the energy optimization of molecular 
docking, and compared with the classical Lamarckian genetic 
(LGA) algorithm. The numerical results reveal the reliability 
of the proposed approach for sampling conformation under 
high flexibility rotalable bonds. 

Keywords- evolutionary algorithm; objective optimization; 
joint modeling; molecular docking  

I.  INTRODUCTION  
Among the many evolutionary algorithms, quantum-

behaved particle swarm optimization algorithm (QPSO) is 
more efficient than many conventional algorithms. Sun et al. 
[1] proposed QPSO which is based on a quantum delta 
potential model. It is inspired by quantum mechanics and 
trajectory analysis of PSO [2]. The signifant difference 
between QPSO and PSO is QPSO introduced the mean best 
position into the algorithm. The QPSO algorithm has been 
shown to successfully solve a wide range of optimization 
problems. Moreover many efficient strategies also have been 
proposed to improve the algorithm performance [3-5]. In this 
article, to improve the performance of QPSO on highly 
dimension complex problems, we propose an improved 
QPSO based on joint modeling of individual particles 
evolutionary process (IEQPSO) algorithm to improve the 
global search capability and the convergence performance of 
the optimization process. The benchmark functions were 
used to test the performance of IEQPSO algorithm. 

The ultimate aim of optimization algorithm is to solve the 
reality problems. In this article, we use the IEQPSO to 
optimize energy search function of molecular docking. 
Molecular docking programs are one of the most widely used 
methods in drug development [6]. They can be used for 
predicting the correct geometry of a ligand-protein complex, 

for identification of novel lead compounds and preliminary 
lead optimization [7] and for investigating mechanisms of 
action of biologically active compounds [8]. The energy 
search of molecular docking is a complex combinatorial 
optimization problem. 

The rest of the paper is organized as follows: in section 2 
describes the the proposed method, section 3 presents the 
experimental results and section 4 contains the conclusion. 

II. ALGORITHM   
In a QPSO with M individuals, each individual is treated 

as a spin-less one moving in the N-dimensional quantum 
space. The mean best position (mbest) nC  is defined by the 
average of the personal best (pbest) positions of all particles. 
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for i = 1,2,...,M, where niP ,  is the personal best (pbest) 
position of particle i. 

From Eq. (1), the mean best position is the average on the 
personal best position of all particles, which means that each 
particle is considered equal and has the same influence on 
the value of mean best position. In fact, it is not properly to 
consider each member equal. Here, we consider the 
evolutionary process of each particle into the mean best 
position for the QPSO. The evolutionary process of each 
particle is based on the joint modeling between the fitness 
value of the global best solution )( nGf and the value of the 

personal best position of the current particle )( ,niPf , and 
given by Eq. (2): 
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From Eq.(2), not only is this reflects the individual 
particle evolutionary rate, but it also helpful for us to gain 
information about the importance of particles in population 
when they are evolving. Then, by exerting the above 
parameter control, the mean best position equation is as 
follows: 
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III. EXPERIMENTAL RESULTS AND ANALYSIS  

A. Performance evaluation and comparison on benchmark 
functions  
To evaluate the overall performance of the proposed 

IEQPSO on function optimization, the algorithm was tested 
on eight well-known benchmark functions (Table 1). For 
performance comparison, PSO with inertia weight (PSO-In), 
the original QPSO algorithm and the QPSO with weighted 
mean best position (WQPSO) [10] were also tested by the 
benchmark functions. Each algorithm ran 50 times on each 
problem using 40 particles to search the global best fitness 
value with each run executed for 2000 iterations. In PSO-In, 
the inertia weight is 0.9 ~ 0.4, two coefficients c1 and  c2 are 
set 2. In QPSO and its variant, the contraction-expansion 
coefficient is set 1.0 ~ 0.5. The mean best fitness value and 
standard deviation out of 50 runs of each algorithm on each 
problem is presented in Table 2. The standard deviation 
values are reflected in brackets. 

TAB.1. Benchmark functions. 
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For Shifted Sphere Function (f1), all the algorithms could 

get a solution near the global optimal solution, but IEQPSO 
got better results than other methods. The results for shifted 
Schwefel’s 222 problem (f2) show that, IEQPSO could find 
global optimum successfully and exhibited its great search 
ability in comparison to the PSO-In and QPSO. For DeJong 
function (f3), the WQPSO algorithm outperformed the other 
methods. For benchmark f4, Rosenbrock function is multi-
modal function, which is too hard to be solved for many 

optimization problems, IEQPSO showed a little better 
performance among all the algorithms and its obvious 
advantage over other algorithms is the standard deviation 
values. The fifth benchmark function f5 is Ackley function 
with global optimum on bounds. Results indicate that all the 
QPSO-based methods showed a better performances for this 
problem than PSO. For function f6, Rastrigrin function, the 
IEQPSO algorithm yielded the best result. In this function, 
the difference between QPSO and PSO was not significant. 
Results obtained for f7, Schaffer problem, IEQPSO had the 
significant advantage over the other methods. The results for 
Shifted Rotated Griewank’s Function without Bounds (f8) 
suggest that IEQPSO was able to find the better solution than 
others. 

TAB.2. Results for the benchmark functions. 

Func 
tions 

PSO-In QPSO WQPSO IEQPSO 

f1 1.192430e-010 
(2.572647e-010) 

2.606978e-029 
(1.123051e-028) 

1.550875e-079 
(4.496400e-079) 

9.525978e-086
(4.203196e-085) 

f2 3.206959e-008 
(3.499209e-008) 

4.624757e-018 
(1.591423e-017) 

2.408737e-049 
(3.648797e-049) 

1.669145e-052 
(3.084726e-052) 

f3 8.048631e-010 
(3.613984e-009) 

6.201183e-037 
(3.341504e-036) 

2.146062e-109 
(1.037800e-108) 

4.094578e-092 
(2.636037e-091) 

f4 7.814176e+001 
(4.647823e+001) 

4.378334e+001 
(3.173342e+001) 

6.730166e+001 
(4.943229e+001) 

2.361887e+001
(2.212292e-001) 

f5 2.038785e-005 
(1.017194e-004) 

1.541008e-009 
(3.804749e-014) 

1.540960e-009
(8.437228e-016) 

1.540978e-009 
(8.220215e-015) 

f6 3.285426e+001 
(8.221160e+000) 

2.152986e+001 
(5.855429e+000) 

9.381218e+001 
(2.941288e+001) 

1.783571e-021
(1.354936e-020) 

f7 3.886364e-004 
(1.903922e-003) 

5.830047e-004 
(2.307388e-003) 

3.902530e-004 
(1.903624e-003) 

5.5511e-018
(3.4528e-016) 

f8 1.312913e-002 
(1.435475e-002) 

6.597326e-003 
(8.014635e-003) 

6.254397e-003 
(1.140907e-002) 

8.881784e-018
(6.217249e-017) 

 
Figure 1 presents the convergence process of the 

algorithms on each benchmark function. It is shown that the 
IEQPSO algorithm had the better convergence property than 
their competitors during the later stage of iteration except for 
the functions f3 and f5. According to the results above in the 
tables and figures, it can be found that IEQPSO was able to 
find the solution of higher quality for the function compared 
to the other methods in most cases. 
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FIG.1 a-h. Convergence Process of the algorithms on each 
benchmark problem. (a) Shifted Sphere function (f1). (b) 
Schwefel’s 222 function (f2). (c) DeJong function (f3). (d) 
Rosenbrock function (f4). (e) Ackley function (f5). (f) 
Rastrigrin function (f6). (g) Schaffer function (f7). (h) 
Griewank function (f8). 

 

B. Molecular docking energy function  
A semi-empirical free energy scoring function was used 

to evaluate a docked conformation in AutoDock 4 [10]. The 
force field consists of six pair-wise evaluations (V) and an 
estimate of the conformational entropy lost upon binding 
( confSΔ ): 
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where P refers to the “protein” and L refers to the 

“ligand” in a protein-ligand docking calculation. 
Each of the pair-wise energetic terms is defined by the 

following energy: a Lennard-Jones 12-6 Van der Waals 
interaction, a 12-10 hydrogen bond potential, a coulombic 
electrostatic potential and a desolvation potential. 
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In molecular docking, ligands with torsions >10 were 

highly flexible. Here, for molecular docking test cases, we 
choice 1b58 and 1ivq which have 19 and 16 torsions, 
respectively. Molecular docking software AutoDock4 was 
used, the results of docking were comppared with LGA 
which is the main algorithm for AutoDock4. The docking 
energy and the corresponding RMSD value for IEQPSO and 
LGA were shown in Table 3 and Figure 2. 

 
TAB.3. Comparison of the lowest docking energy and the 
corresponding RMSD value of IEQPSO and LGA. 

PDB Torsions IEQPSO LGA
Energy RMSD Energy RMSD

1b58 19 -19.68 1.63 -12.74 2.00 
1ivq 16 -14.63 1.71 -7.25 1.63 
 

 
 

 
 
 

FIG.2. a-d. Docking examples of two complexes 1b58 ((a) 
IEQPSO, (b) LGA.) and 1ivq ((c) IEQPSO, (d) LGA.). The 
color of the predicted pose is pink and the crystal pose is 
green. 
 

IV. CONCLUSION  
This article describes an improved quantum behaved 

particle swarm optimization and its application in molecular 
docking energy optimization problem. To assess the 
performance of the IEQPSO, eight test cases consisting of 

the unimodal functions and multimodal functions have been 
taken for comparison. Statistical measures calculated for the 
optimization algorithms show that the IEQPSO algorithm 
significantly improves the search ability and convergence 
precision than other compared algorithms. For molecular 
docking test cases 1b58 and 1ivq, the results demonstrate 
that the proposed IEQPSO is feasibility for high-dimensional 
flexibility docking problem. 
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