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Abstract— In this paper, a nonlinear synchronous controller 
with exponential function based on Lyapunov stability 
theory is designed to realize the projective synchronization 
of two active magnetic controlled memristor-based chaotic 
systems. Then complete synchronization, proportional 
projective synchronization and function projective 
synchronization between two different memristor-based 
chaotic systems are realized, respectively. The 
synchronization characteristics are analyzed by error curve, 
synchronous sequence diagram, state variable fitting curves 
and phase diagrams, respectively. Numerical simulations are 
verified the correctness and feasibility of the proposed 
method.  
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I.  INTRODUCTION 
In recent years, with the physical realization of the 

memristor and the extensive development of research on 
the memristor-based chaotic system the research on 
synchronization control of memristor-based chaotic system 
has also aroused widespread concern of international and 
domestic academics [1-4]. In 1990, chaotic 
self-synchronization was first proposed by L.M. Pecora 
and T.L.Carrol of the United States Navy Laboratory. 
They used the drive-response method to synchronize two 
chaotic systems, which opened a new field of chaotic 
application. A new type of double-compound 
synchronization, based on combination-combination 
synchronization and compound synchronization of four 
chaotic systems, was investigated for six memristor-based 
Lorenz systems. Using Lyapunov stability theory and 
adaptive control, some sufficient conditions were attained 
to ensure the conclusions hold[5]. A novel complex Lorenz 
system with a flux-controlled memristor was investigated 
and its synchronization was realized [6]. Moreover, with 
the help of the memristor, the researchers constructed a 
new hyperchaotic system based on Chua circuit, and the 
synchronization of two chaotic systems with linear 
coupling was analyzed through the PC control and linear 
feedback method[7]. However, all of the above discussions 
focus on the synchronization between homogeneous 
memristor-based chaotic systems and there are few 
researches on synchronization of heterogeneous 
memristor-based chaotic systems. The synchronization of 
heterogeneous memristor-based chaotic systems is more 
complex than that of homogeneous memristor-based 
chaotic systems, so its anti-decipher ability is stronger, 
which has more advantageous to the application of secure 
communication, image encryption and many other 
applications of chaotic systems [8-11]. Therefore, it is very 
necessary to study the synchronization of heterogeneous 
memristor-based chaotic systems. 

Based on Lyapunov stability principle, a nonlinear 
synchronization controller with exponential term is 
designed in this paper for two active magnetic controlled 
memristor-based chaotic systems with different structures.  
The designed nonlinear controller with different 
parameters is simple in structure and can realize complete 
synchronization, proportional projective synchronization 
and function projective synchronization between active 
magnetically controlled Lorenz-like memristor-based 
chaotic system and Chua-like memristor-based chaotic 
system. The realization of multiple projective 
synchronization of heterogeneous memristor-based chaotic 
systems lays a theoretical foundation for subsequent 
applications such as secure communication and image 
encryption. 

II. DESIGN OF SYNCHRONOUS CONTROLLER 
Defining two n-dimensional dynamical systems with 

different structures. The drive system and controlled 
response system are described as, respectively,  
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where , ,( 1,2,3 )i ix y i n= �  are the state variable of drive 
system and response system, respectively, ( 1,2,3 )iu i n= �  
is the synchronous controllers. To synchronize drive 
system with response system, the synchronization error 
between drive system and response system is given by 

lim lim 0i i it t
e y xα

→∞ →∞
= − =        (3) 

where the coefficient 0n aα ∈ ∩ ≠R can be chosen 
different value. If, α  is a setting proportional coefficient 
or a proportional function. If 1α = , the synchronization  
for drive system and the response system belong to 
complete synchronization. When 1nα α∈ ∩ ≠R 0a∩ ≠ , 
the response system is synchronized with the drive system 
in different proportions. When α  is a function of time,  
the controlled response system is function synchronized 
with the drive system. 

In this way, the synchronization problem of two 
different systems can be converted into the control 
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problem of the synchronous error system. The dynamic 
equation of the error system for drive system and response 
system is 
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According to Lyapunov asymptotic stability theorem, 
a positive definite quadratic form function (1 2) TV e e=  is 
designed as Lyapunov function. If there is TV e e=� � , the 
system (4) is asymptotically stable on a large scale as long 
as V� is negative semi-definite [12]. Therefore, the 
synchronous control problem of two systems can be 
indirectly transformed into the selection of control law 
and control parameters. In the following, two different 
memristor-based chaotic systems are taken as an example 
to design the synchronization controller and analyze its 
feasibility. 

Let the Lorenz-like system in [13] be the drive system, 
which is an active magnetically controlled 
memristor-based chaotic system constructed on the 
classical Lorenz system. The governing equation is shown 
as 
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where ( ) 2
1 13W w a bw= + is the mathematical model of 

three-order active magnetic controlled memristor, 1w  is 
the agnetic flux of the memristor, a  and b  are 
parameters that determine the characteristics of the 
memristor, 1α , 1β , 1ξ  and 1γ  are the parameters that 
determine the motion state of the system, respectively. 

Let the Chua-like system in [14] be the response 
system, which is an active magnetically controlled 
memristor-based chaotic system constructed on the 
classical Chua system. The corresponding equation is 
given by  
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where ( ) 2
2 23W w a bw= +  is also the mathematical model 

of three-order active magnetic controlled memristor, 2α , 
2β  and 2ξ  is the parameters of the system,respectively.  

1u , 2u , 3u  and 4u  are the synchronous controllers we 
designed, respectively. 

 The synchronization error is described as  
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Substituting (5) and (6) for (4), the following dynamic 
equations of error system are obtained 
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Then select the following nonlinear feedback control 
functions  
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where ( )1,2,3,4ik i = is the feedback control gain. For 
( ) 0isign e

ikα − <� , the state variables of the drive system and 
the response system can be synchronized. Complete  or 
proportional projective synchronization is achieved if 

( )0 1,2,3,4ik i> = and Rα ∈ . The function projective 
synchronization between the two systems can be realized 
with ( ) ( )/ 0 1,2,3,4isign e

ik iα α − < =� , when α  is a function 
of time. 

The feasibility of the synchronous controller is proved 
as follows. The error equations are obtained by combining  
(8) and (9)    
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Thus, the stability of the error system (8) can be 
directly analyzed to solve the synchronization problem of 
the drive and response systems.  

Constructing Lyapunov function as (1 2) TV e e= , the 
derivation of the Lyapunov function on time can be 
obtained as 
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As long as ( ) ( )/ 0 1,2,3,4isign e
ik iα α − < =� , V� must be a 

negative semi-definite, the projective synchronization of 
drive system and response system is realized. Drive 
system and response system can achieve complete or 
proportional projective synchronization when Rα ∈  and 

0ik > ( )1,2,3,4i = . When α  is a function about time, 
there are many combinations about the choice of  α  and 

( )1,2,3,4ik i = , the function projective synchronization 
between the two systems can be realized with 

( ) ( )/ 0 1,2,3,4isign e
ik iα α − < =� . 

III. PROJECTIVE SYNCHRONIZATION FOR 
HETEROGENEOUS MEMRISTOR-BASED CHAOTIC SYSTEMS 

The system parameters in (5) are set as 0.5a = − , 
0.8b = , 1 15α = , 1 8β = , 1 1.68ξ = , and 1 15.15γ = , and 

the system parameters in (6) are given by 0.4a = − , 0.8b = , 
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2 4α = , 2 0.7β = , 2 0.1ξ = . Based on previous analysis, the 
multiple projective synchronization can be realized by 
changing the value of the feedback control gain 

( )1,2,3,4ik i = and α . 

A. Complete Synchronization 
For 1α = make sure ( )0 1,2,3,4ik i> = and the 

complete synchronization of the drive system and the 
response system can be realized. Let 1 2 3 4 2k k k k= = = = , 
the initial conditions of the drive system and the response 
system are presented as  1 1 1 1 1 1 1 11 1 1 1 2 2 2 2( , , , , , , , )o o o o o o o ox y z w x y z w  
= 1,3,2,1,0.1,0.3,0.1,0.2) respectively. Then complete 
projective synchronization of the two systems is achieved 
as shown in Fig.1. The synchronization error curves of 
complete synchronization are tend to zero for 2t s≥ or so 
in Fig.1 (a). It can be seen that the heterogeneous 
memristor-based chaotic systems reach gradually complete 
synchronization. The time-histories of drive system and 
response system are also shown in Fig.1 (b), (c), (d), 
respectively. 

 

 
(a) 
 

 
(b) 

 
(c) 

 
(d) 

Fig. 1 Complete synchronization simulation diagram:(a) the 
error curves for synchronization, (b)-(d) time-histories of the state 

variables 1 2 1 2 1 2and ,  and z ,  and y y z w w . 

B. Proportional Projective Synchronization 
When 1 0n aα α∈ ∩ ≠ ∩ ≠R , just make sure 

( )0 1,2,3,4ik i> = and the proportional projective 
synchronization will be realized. When =2α , 

1 2 3 41, 2, 3, 4k k k k= = = = are given, and the initial conditions 
of drive system in (5) and response system in (6) are also 
shown as ( )1,3,2,1,0.1,0.3,0.1,0.2 , proportional projective 
synchronization for heterogeneous memristor-based 
chaotic systems is achieved as depicted in Fig.2. Taking 

2α = means that the value of each state variable in the 
response system is doubled by the corresponding variable 
of the drive system. The black region in Fig. 2 is the 
attractor produced by the drive system while the red region 
is the attractor produced by the response system. The 
projective synchronization ratio between the response 
system and the drive system can be clearly observed from 
the diagram, which meets the design requirements of the 
synchronization controller.  

 
Fig.2 The phase plane for proportional projective synchronization 

C. Function Projective Synchronization 

Whenα is a function of time, and ( )/ 0isign e
ikα α − <� ,

( )1,2,3,4i =  is satisfied at the same time, the functional 
synchronized will be obtained. Let 2 0.5sin tα = − +  and 

1 2 3 4 2k k k k= = = = , then we can figure out
( ) ( ) { }1,2,3,4 1, 2isign e

ik i− = ∈ − − , [ ]0.5cos 0.5,0.5tα = ∈ −� , 

then ( ) ( )/ 0 1,2,3,4isign e
ik iα α − < =� is satisfied. To contrast 

with proportional projective synchronization, the initial 
values of drive system in (5) and response system in (6) 
are also set as ( )-1,1,2,-1,0.1,0.2,-0.3,-0.1 . Then the 
functional projective synchronization for heterogeneous 
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memristor-based chaotic systems is achieved and plotted 
in Fig. 3. 

 

 
Fig.3 Phase plane of functional projective synchronization  

IV. CONCLUSION 
In this paper, the projective synchronization between 

the Lorenz-like and the Chua-like memristor-based chaotic 
systems was realized. The nonlinear synchronous 
controllers with exponential terms were designed 
according to the equations of the active magnetic control 
memristor-based chaotic systems to realize the projective 
synchronization. Through the analysis of the error curves, 
the synchronous sequence diagram, the time-histories of 
state variables and the phase diagrams, the different 
synchronizations of two systems with different structures 
were obtained. The synchronization controller designed in 
this paper has good synchronization performance, and the 
simulation results were in good agreement with the 
theoretical analysis. Memristor-based chaotic system has 
special and rich dynamic phenomena, and the 
synchronization type of heterogeneous chaotic systems is 
more complex than homogeneous chaotic systems. 
Therefore, the projective synchronization of active 
magnetically controlled heterogeneous memristor-based 
system in this paper has great application prospect in 
chaotic secure communication, image encryption and so 
on.  
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