
An improved algorithm for mining maximal frequent itemsets based on FP-tree

CHEN TongQing, YE FeiYue*, GE XiCong, LIU Qi
School of Computer Science and Engineering

Jiangsu Institute of Technology

Changzhou,China

yfy@jsut.edu.cn

Abstract—Mining maximal frequent itemsets is an important
research topic in data mining. The existing FPMAX
algorithm for mining maximal frequent itemsets based on
FP-tree necessitate to construct conditional subset trees
recursively. While the amount of frequent itemsets is large, it
will cause huge consumption both in terms of runtime and
memory. Therefore, this paper proposes an improved
algorithm FPMAX-direct for mining maximal frequent
itemsets based on FP-tree. This novel algorithm will simplify
the construction of the conditional subset trees by adding
directly the branch of FP-tree whose support is no less than
a user-specified minimum support threshold to the maximal
frequent candidate itemsets. Experimental results show that
FPMAX-direct algorithm outperforms FPMAX algorithm in
dense datasets.

Keywords-maximal frequent itemsets; FP-tree; FPMAX;
FPMAX-direct

I. INTRODUCTION

As an important branch of data mining, the association
analysis is applied to find some interesting rules from a big
scale of dataset. Mining the frequent itemsets is a basic and
critical phases of the association analysis. In general, the
amount of frequent itemsets is enormous and there is an
inclusion relationship among the itemsets, which results in
information redundancy. To some extent, maximal
frequent itemsets can be used instead of frequent itemsets,
because the maximal frequent itemsets encompass all the
information on all frequent itemsets. Besides, in some
applications of data mining, we only need to mine the
maximal frequent itemsets, so how to mining them quickly
and effectively has been hot in current research.

Since Agrawal proposes Apriori algorithm[1] to
discover association rules in 1993, there have been many
researchers putting forward lots of improved approaches
based on it, whereas all of them have to scan database
multiple times, which cause expensive consumption
especially at the time the scale of the dataset is large. To
overcome this problem, Han et al.[2] introduce a novel
algorithm without candidate generation for mining the
frequent itemsets over dataset. This algorithm is
characterized by using an efficient and compact data
structure named frequent pattern tree(FP-tree in short) to
compress the dataset and only scans the database twice
avoiding multiple database scans like Apriori algorithm.
At present, the existing mining algorithms of the maximal
frequent itemsets are mainly modifications based on
Apriori or FP-trees. The Apriori-based algorithm mainly
include Max-Miner algorithm[3], Pincer-Search[4], DMFI[5].
The algorithms based on FP-tree mainly include FP-
MAX[6] and DMFIA[7]. The Apriori-based algorithms
usually adopt a series of pruning strategies to prune the
search space. However, they all require multiple database

scans and will generate large quantities of alternative
itemsets that is expensive consumption both in term of
runtime and memory. To avoid the shortcomings of the
Apriori-based algorithms, the algorithms for mining
maximal itemsets over big dataset are mainly based on FP-
tree.

The algorithm proposed in this paper is also based on
the data structure FP-tree. After research on FP-MAX
algorithm, we find that this algorithm needs traversal in the
header table to obtain the conditional pattern bases, and
then builds the conditional FP-trees. While the dimension
of the dataset is large, constructing conditional FP-trees
will cause memory overflow and cost much time.
Therefore, this paper proposes the FPMAX-direct
algorithm to overcome those drawbacks to a certain extent,
which makes use of some strategies as follows: adding
directly the itemsets whose support is no less than the
predefined minimum support threshold to MFCS-tree, only
using the others to build the conditional FP-trees during
traversing the corresponding prefix paths according to the
header table, and besides adding a mark for each node of
the FP-tree. Those can simplify the conditional FP-trees
constructing and superset checking. At last, we evaluate
the good performance of the FPMAX-direct algorithm by
comparing the performance of FPMAX-direct against
FPMAX on several datasets having various characteristics.

II. RELATED KONWLEDGE

A. Frequent itemsets and maximum frequent itemsets
Let 1 2{ , ,.., }mI i i i� be a set of different items with the

quantity of m and = 1 2 nDB {T ,T ,..,T } be a transactional

database, where iT is a transaction which contains a set of

items in I . Assume the amount of transactions in a
transaction database DB is N and itemset X is a subset

of Ι(X I) , we can define count(X) as the numbers of

transactions containing X in DB , thus the support of X

can be calculated by count(X) / N .

Definition 1. Given a minimum support threshold
minSup which is the occurrence frequency in the database,

if support(X) minSup� , the itemset X is defined as

frequent itemsets. Meanwhile, the minimum support

threshold number minCount = minSup N� .

Definition 2. For any frequent itemset X , if there is

no frequent itemset ()Y Y I� such that X Y� , the

itemset X is called as the maximal frequent itemset.
Property 1. All the proper subsets of any maximal

frequent itemset are not the maximal frequent itemset.
Property 2. All the subsets of any frequent itemset are

frequent.

225

2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science

978-1-5386-7445-1/18/$31.00 ©2018 IEEE
DOI 10.1109/DCABES.2018.00065

B. Fp-tree and FPMAX Algorithm
FP-tree proposed by Han in 2000 is a compact data

structure which can store essential information about the
frequent itemsets of a transactional database. In the FP-
tree, the itemsets consisting of a set of nodes of each path
from the root to each descendant is corresponding to one
transactional set of the transactional database. To ensure
that the tree structure is compact and informative, only
frequent length-1 items will have nodes , each of which is
associated with a frequent item in the tree, and the tree
nodes are arranged as some sorted order of frequent items.
Nodes with the same item-name are linked in sequence
via such node-links.

FPMAX algorithm is an extended algorithm
developed to discover maximal frequent itemsets based on
the compact data structure FP-tree and FP-growth
algorithm. To mine the maximal frequent itemsets, this
algorithm requires to add every item in the header table
into the set of head items(namely Head) according to the
occurrence frequency in the database as the initial suffix
and gather the corresponding conditional bases to
construct the sub-FP-trees. In order to prune the process, it
is necessary to check itemsets consisting of the header
table of the sub-FP-tree union the suffix items whether is
the subset of the maximal frequent itemsets which have
been mined. If the answer is yes, skip the construction of
this conditional FP-tree. Otherwise, we should gather the
conditional bases to construct the conditional FP-tree and
mine the sub-FP-tree till there is only single path in the
sub-FP-tree. Then the itemsets consisting of the current
header table of the sub-FP-tree union the corresponding
suffix items are the maximal frequent candidate itemsets.
Thus this method employs a MFI-tree-like data structure
FP-tree to store the maximal frequent itemsets and check
the candidates to identify the final maximal frequent
itemsets. More details about FPM-AX algorithm can be
referred to paper[6].

III. FPMAX-DIRECT ALGORITHM BASED ON FP-TREE

A. Description of the algorithm
Similar to FPMAX algorithm, FPMAX-direct

algorithm also need to facilitate bottom-up-depth-first
traversal. FPMAX algorithm requires to traverse the
header table in item’s frequency descending order to
collect each item and then search the current FP-tree to
gather the conditional pattern base of the item to construct
the corresponding sub-FP-trees. This algorithm constructs
the sub-FP-trees recursively without making the best use
of some pruning strategies. Our algorithm FP-MAX-direct
add one field called mark for each node in the FP-tree
where mark registers whether this node has been added
into the MFSC, that can prune the search space. We
examine the mining process by starting from the bottom
of the node-link header table. While following a node

'ia s node-links to collect the conditional bases, if the

mark of the node is 1 and the count of the node is more
than the predefined minimum support threshold, then we
add directly the itemset consisting of all the items of the
path from the root to the current node into the set named
MFSC, Meanwhile, if the mark of the node is 1 and the
count of the node is less than the threshold, we gather

them for the next phrase to construct the conditional FP-
trees. By employing those, we can simply the construction
of the sub-FP-trees, consequently the runtime will be
reduced largely.

B. The algorithm flew
Algorithm 1: Mining Maximal frequent candidate

itemsets
Input: FP-tree(T) created from the transaction database

D with all nodes of the tree with the field of the mark and
predefined minimum support s.

Output: a dictionary storing the maximal frequent
candidate itemset

Procedure MFSCALL(preFix,HeaderTable,T,s)
{
(1)for item in T.HeaderTable.keys()
(2) MFSC,ConPatBase=FinMFSC_ConPatBase(pre-

Fix,HeaderTable[item][1],s)
(3) if MFSC!=None
(4) for each m in MFSC
(5) if subsetChecking(m,MFSC-tree) is false
(6) updateMFSC_tree(m)
(7) add m into MFSCALL
(8) if ConPatBase!=None
(9) Construct item’s conditional FP-tree Ti and

initialize Ti

(10) MFSCALL(prefix,Header,Ti,s)
}

Algorithm 2: gathering the conditional pattern bases
and the MFSC

Input: the current node of the tree, predefined support
threshold s and the suffix.

Output: the MFSC and the conditional pattern bases
Procedure FinMFSC_ConPatBase(prefix,treeNode,s)
{
(1) While(treeNode!=None)
(2) { if treeNode.count>s and treeNode.mark==1
(3) FindPrefixPath and treeNode.mark=0
(4) checkMFSC(prefixPath)
(5) add prefixPath into MFSC
(6) else if treeNode.mark==1 and treeNode.count<s
(7) FindPrefixPath and add PrefixPath to

ConPatBase
(8) Return MFSC,ConPatBase
(9) }}
Algorithm 3: identifying the final maximal frequent

itemsets
Input: the maximal frequent candidate itemsets
Output: the maximal frequent itemsets
Procedure MFS(MFSCALL)
{
//MFSCALL is the dictionary
(1) For key,item in MFSCALL
(2) Deal the item which is subset of others in

MFSCALL[key]
(3)
 Insert MFSCALL[key] into MFS
(4) Return MFS
(5) }
//FindPrefixPath is similar to the algorithm used to

find the prefix path of one node in FPMAX algorithm.
//subsetChecking is similar to superset-checking

function in FPMAX algorithm.

226

1:7

8:5

2:4

7:3

Null

1:7,1

8:5,1

7:1,1

2:3,1 7:1,1

2:1,1

7:1,1

1:3

NULL

1:3,1

IV. ANALYSIS OF AN INSTANCE

A small transaction database is given in the Table 1,
and the corresponding FP-tree of this database is given in
Fig. 1 when the minimum support threshold is 0.3.

TABLE I. A TRANSACTION DATABASE

Table
Head

Table Column Head

TID Itemset
Frequent
length-1
itemsets

 T001 1,5,7,8 1,8,7

 T002 1,2,5,7 1,2,7

 T003 1,2,8 1,8,2

 T004 1,2,7,8 1,8,2,7

 T005 1,3,6 1

 T006 1,8,9 1,8

 T007 1,2,8 1,8,2

Figure 1. FP-tree with mark node

The details of mining the maximal frequent itemsets
over the database given in table 1 with FPMAX-direct is
as following:

(1) According the descending order of the occurrence
frequency of the items in the header table, we mine the
maximal frequent itemsets ending with 7 at first. As we
can see from Fig 1, the marks of all the nodes of which
item-name is 7 are all 1 and there are three prefix paths of
the node with item-name being 7, besides the counts of
two nodes are 1, less than the support threshold. Therefore,
we build the sub-FP-tree for item 7 based on those three
paths and the sub-FP-tree is shown in Fig 2. In the next
phase, we should mine the sub-FP-tree in the Fig 2. We
can find there is only one node with item-name being 1,
its mark is 1 and its count is 3, more than the support

threshold. So we should add {1,7} into MFCS and

meanwhile update the MFCS-tree, then set the dictionary

� �	
6 : 1,6MFCSALL � � �
 � , Fig 3 shows the updated

MFCS-tree

Figure 2. The conditional FP-tree of the item

1

8

2

7

Null

1

7

Figure 3. The updated MFCS-tree

 (2) In the following phase, we should process the path
ending with the item 2. As is shown from Fig 1, there are
two nodes with item-name being 2 and mark being 1.
Starting from the tree nodes, we can gather three sets:

	
1,8, 2 : 3 ,	
1,2 :1 . The support of set 	
1,8,2 is 3, more

than the minimum support threshold. So we can add this
set into MFSC and set the mark of the nodes to 0, and
update the MFSC-tree, then finally set the set

� � � �	
7 : 1,7 ,5 : 1,8,2MFSCALL � � � �
 �
� � . The set {1,2} of

which support is less than the support threshold will be
used to construct the sub-FP-tree. Because there is only
one set with low support, we cannot build the conditional

FP-tree and we will get the frequent set {1,2} as the

maximal frequent candidate itemsets, then use MFSC-tree
for supersets checking and update MFSC-tree and
MFSCALL. Fig 4 shows the updated MFSC-tree.

1

8

2

7

Null

1

7

2

8

Figure 4. The updated MFCS-tree

(3) Similarly, Find the maximal frequent candidate
itemsets ending with 8,1 in turn. Finally, we will get

MFS {7: [[1, 6]], 8: [[1, 8,2]]}CALL � .

(4) At last, we only need to process the dictionary to
select the maximal frequent itemsets according to the key

of the dictionary. We get MFS=[[1, 7][1,8,2]] .

V. ANALYSIS AND COMPARISON

In order to verify the outperformance of FPMAX-
direct compared with FPMAX. The experiment environ-
ment is Intel(R) Core(TM) i7-4790 CPU 3.6GHz, 8.00GB
RAM and the operating system of Windows 10. The
program is realized by Python. In the testing, we employ
four datasets having various characteristics, two of them
are mushroom and chess, dense public transaction dataset,
and the rest are F1 and F2 sparse synthetic dataset. More
details about those datasets are listed in Table 2.

TABLE II. CHARACTERISTICS OF THE DATASETS

227

Table
Head

Table Column Head
Average

length of a

transaction

Numbers of
transaction Numbers of item

Mush-

rooma

23 8124 120

Chess 37 3196 76

F1 5 60798 7360

F2 5 60810 17910

In this paper, we carry out the comparison experiments

of the two algorithms under the conditions of different
minimum supports and datasets. Fig 5 shows the
comparison of the runtime of the two algorithms in the
condition of different minimum supports on the dataset
mushroom. Fig 6 shows the comparison on the dataset
chess. Fig 7 shows the comparison on the dataset F1. Fig
8 shows the comparison on the dataset F2.

Obviously, from the results, we can conclude that
FPMAX-direct algorithm outperforms against FPMAX
algorithm for mining the maximal frequent itemsets,
especially on the dense dataset.

VI. CONCLUSION

This paper proposes a novel algorithm FPMAX-direct
for mining the maximal frequent itemsets based on FP-
tree. This algorithm employs some strategies that are
adding filed of mark and branch-checking to simply the
construction of the sub-FP-trees, which can improve the
efficiency of mining the maximal frequent itemsets on
dense datasets. The results of the experiments prove the
outperformance of FPMAX-direct compared with

FPMAX on dense datasets or under the condition of low
support. Therefore, this novel algorithm can be applied in
data mining task over dense datasets.

ACKNOWLEDGMENT

This work was supported by the National Natural
Science Foundation of China under Grant Nos. 61472166.

REFERENCES

[1] Imielinski T, Swami A, Agrawal R. Mining association rules
between sets of items in large database[C]. In Proceedings of 1993
ACM SIGMOD conference on management of data.New York:
ACM, 1993: 207-216.

[2] Han J, Pei J, Yin Y. Mining frequent patterns without candidate
generation[C]. In Proceedings of the 2000 ACM-SIGMOD
international conference on management of data.New York: ACM,
2000: 1-12.

[3] Hur J, Noh D K. Attribute-Based Access Control with Efficient
Revocation in Data Outsourcing Systems[J]. IEEE Transactions on
Parallel and Distributed Systems, 2011, 22(7).

[4] Lin D, Kedem Z. Pincer-search: a new algorithm for discovering
the maximum frequent set[C]. In Proceedings of the 6th European
conference on extending database technology, Valencia, Spain,
1998: 432-444.

[5] Lu Songfeng, Lu Zhengding. Fast Mining Maximum Frequent
Itemsets[J]. Journal of Software, 2001, 12(2): 293-297.

[6] Grahne G, Zhu J. High performance mining of maximal frequent
itemsets[C]. In Proceedings of the 6th International Workshop on
High Performance Data Mining, 2003: 1-10.

[7] Song Yuqing, Zhu Yuquan, Sun Zhihui, Chen Geng. An Algorithm
and Its Updating Algorithm Based on FP-Tree for Mining
Maximum Frequent Itemsets[J]. Journal of Software, 2003, 14(09):
1586-1592.

Figure 5 comparison on mushroom Figure 6 comparison on chess

Figure 7 comparison on F1 Figure 8 comparison on F2

228

